10 223

Cited 0 times in

Multimodal AI model for preoperative prediction of axillary lymph node metastasis in breast cancer using whole slide images

DC Field Value Language
dc.contributor.author박은향-
dc.contributor.author박현진-
dc.contributor.author박희정-
dc.contributor.author신수진-
dc.contributor.author이양규-
dc.contributor.author조남훈-
dc.contributor.author차윤진-
dc.date.accessioned2025-07-17T03:06:27Z-
dc.date.available2025-07-17T03:06:27Z-
dc.date.issued2025-05-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/206580-
dc.description.abstractIn breast cancer management, predicting axillary lymph node (ALN) metastasis using whole-slide images (WSIs) of primary tumor biopsies is a challenging and underexplored task for pathologists. We developed METACANS, an multimodal artificial intelligence (AI) model that integrates WSIs with clinicopathological features to predict ALN metastasis. METACANS was trained on 1991 cases and externally validated across five cohorts with a total of 2166 cases. Across all validation cohorts, METACANS achieved an area under the curve (AUC) of 0.733 (95% CI, 0.711-0.755), with an overall negative predictive value of 0.846, sensitivity of 0.820, specificity of 0.504, and balanced accuracy of 0.662. Without additional annotations, METACANS identified pathological imaging patterns linked to metastatic status, such as micropapillary growth, infiltrative patterns, and necrosis. While its predictive performance may not yet support immediate clinical application, METACANS addresses the task of predicting ALN metastasis using WSIs and clinicopathological features, and demonstrates the feasibility of multimodal AI approaches for preoperative axillary staging in breast cancer.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherSpringer Nature-
dc.relation.isPartOfNPJ PRECISION ONCOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleMultimodal AI model for preoperative prediction of axillary lymph node metastasis in breast cancer using whole slide images-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pathology (병리학교실)-
dc.contributor.googleauthorDoohyun Park-
dc.contributor.googleauthorYong-Moon Lee-
dc.contributor.googleauthorTaejoon Eo-
dc.contributor.googleauthorHee Jung An-
dc.contributor.googleauthorHaeyoun Kang-
dc.contributor.googleauthorEunhyang Park-
dc.contributor.googleauthorYoon Jin Cha-
dc.contributor.googleauthorHeejung Park-
dc.contributor.googleauthorDohee Kwon-
dc.contributor.googleauthorSun Young Kwon-
dc.contributor.googleauthorHye-Ra Jung-
dc.contributor.googleauthorSu-Jin Shin-
dc.contributor.googleauthorHyunjin Park-
dc.contributor.googleauthorYangkyu Lee-
dc.contributor.googleauthorSanghui Park-
dc.contributor.googleauthorJi Min Kim-
dc.contributor.googleauthorSung-Eun Choi-
dc.contributor.googleauthorNam Hoon Cho-
dc.contributor.googleauthorDosik Hwang-
dc.identifier.doi10.1038/s41698-025-00914-9-
dc.contributor.localIdA05760-
dc.contributor.localIdA06075-
dc.contributor.localIdA06305-
dc.contributor.localIdA04596-
dc.contributor.localIdA06080-
dc.contributor.localIdA03812-
dc.contributor.localIdA04001-
dc.relation.journalcodeJ04176-
dc.identifier.eissn2397-768X-
dc.identifier.pmid40328953-
dc.contributor.alternativeNamePark, Eunhyang-
dc.contributor.affiliatedAuthor박은향-
dc.contributor.affiliatedAuthor박현진-
dc.contributor.affiliatedAuthor박희정-
dc.contributor.affiliatedAuthor신수진-
dc.contributor.affiliatedAuthor이양규-
dc.contributor.affiliatedAuthor조남훈-
dc.contributor.affiliatedAuthor차윤진-
dc.citation.volume9-
dc.citation.number1-
dc.citation.startPage131-
dc.identifier.bibliographicCitationNPJ PRECISION ONCOLOGY, Vol.9(1) : 131, 2025-05-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.