11 63

Cited 0 times in

HaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge

DC Field Value Language
dc.contributor.author김진성-
dc.date.accessioned2025-07-09T08:40:54Z-
dc.date.available2025-07-09T08:40:54Z-
dc.date.issued2024-09-
dc.identifier.issn0167-8140-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/206569-
dc.description.abstractBackground and purpose: To promote the development of auto-segmentation methods for head and neck (HaN) radiation treatment (RT) planning that exploit the information of computed tomography (CT) and magnetic resonance (MR) imaging modalities, we organized HaN-Seg: The Head and Neck Organ-at-Risk CT and MR Segmentation Challenge. Materials and methods: The challenge task was to automatically segment 30 organs-at-risk (OARs) of the HaN region in 14 withheld test cases given the availability of 42 publicly available training cases. Each case consisted of one contrast-enhanced CT and one T1-weighted MR image of the HaN region of the same patient, with up to 30 corresponding reference OAR delineation masks. The performance was evaluated in terms of the Dice similarity coefficient (DSC) and 95-percentile Hausdorff distance (HD95), and statistical ranking was applied for each metric by pairwise comparison of the submitted methods using the Wilcoxon signed-rank test. Results: While 23 teams registered for the challenge, only seven submitted their methods for the final phase. The top-performing team achieved a DSC of 76.9 % and a HD95 of 3.5 mm. All participating teams utilized architectures based on U-Net, with the winning team leveraging rigid MR to CT registration combined with network entry-level concatenation of both modalities. Conclusion: This challenge simulated a real-world clinical scenario by providing non-registered MR and CT images with varying fields-of-view and voxel sizes. Remarkably, the top-performing teams achieved segmentation performance surpassing the inter-observer agreement on the same dataset. These results set a benchmark for future research on this publicly available dataset and on paired multi-modal image segmentation in general.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherElsevier Scientific Publishers-
dc.relation.isPartOfRADIOTHERAPY AND ONCOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHHead and Neck Neoplasms* / diagnostic imaging-
dc.subject.MESHHead and Neck Neoplasms* / radiotherapy-
dc.subject.MESHHumans-
dc.subject.MESHMagnetic Resonance Imaging* / methods-
dc.subject.MESHOrgans at Risk* / radiation effects-
dc.subject.MESHRadiotherapy Planning, Computer-Assisted* / methods-
dc.subject.MESHTomography, X-Ray Computed* / methods-
dc.titleHaN-Seg: The head and neck organ-at-risk CT and MR segmentation challenge-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorGašper Podobnik-
dc.contributor.googleauthorBulat Ibragimov-
dc.contributor.googleauthorElias Tappeiner-
dc.contributor.googleauthorChanwoong Lee-
dc.contributor.googleauthorJin Sung Kim-
dc.contributor.googleauthorZacharia Mesbah-
dc.contributor.googleauthorRomain Modzelewski-
dc.contributor.googleauthorYihao Ma-
dc.contributor.googleauthorFan Yang-
dc.contributor.googleauthorMikołaj Rudecki-
dc.contributor.googleauthorMarek Wodziński-
dc.contributor.googleauthorPrimož Peterlin-
dc.contributor.googleauthorPrimož Strojan-
dc.contributor.googleauthorTomaž Vrtovec-
dc.identifier.doi10.1016/j.radonc.2024.110410-
dc.contributor.localIdA04548-
dc.relation.journalcodeJ02597-
dc.identifier.eissn1879-0887-
dc.identifier.pmid38917883-
dc.subject.keywordComputational challenge-
dc.subject.keywordComputed tomography-
dc.subject.keywordDeep learning-
dc.subject.keywordHead and neck cancer-
dc.subject.keywordMagnetic resonance-
dc.subject.keywordOrgans-at-risk-
dc.subject.keywordRadiotherapy-
dc.subject.keywordSegmentation-
dc.contributor.alternativeNameKim, Jinsung-
dc.contributor.affiliatedAuthor김진성-
dc.citation.volume198-
dc.citation.startPage110410-
dc.identifier.bibliographicCitationRADIOTHERAPY AND ONCOLOGY, Vol.198 : 110410, 2024-09-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.