Cited 0 times in
Cited 0 times in
Daily estimation of NO2 concentrations using digital tachograph data
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김창수 | - |
dc.date.accessioned | 2025-07-09T08:37:53Z | - |
dc.date.available | 2025-07-09T08:37:53Z | - |
dc.date.issued | 2024-11 | - |
dc.identifier.issn | 0167-6369 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/206536 | - |
dc.description.abstract | Traffic information is crucial for estimating NO2 concentrations, but it is static and limited in predicting constantly changing NO2 levels. To overcome these challenges, this study utilized real-time spatial big data to capture both the spatial and temporal fluctuations in traffic. Digital tachograph (DTG) data, sourced from digital devices in all commercial vehicles, are employed to construct a DTG land use regression (LUR) model, and its performance is compared with that of a non-DTG-LUR model. The DTG-LUR model exhibits superior performance, with an explanatory power of 0.46, in contrast to the 0.36 of the non-DTG model. This significant improvement stems from the spatially and temporally dynamic DTG variables such as cargo traffic. This study introduces a novel approach for incorporating DTG data in correlating with NO2 concentrations. It underscores the advantage of DTG data in predicting daily NO2 fluctuations at a precise 200-m grid, which is not feasible with conventional data. The findings of the study highlight the immense potential of spatial big data for fine-grained analyses, which could enable hourly predictions of air pollution. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Springer | - |
dc.relation.isPartOf | ENVIRONMENTAL MONITORING AND ASSESSMENT | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Air Pollutants* / analysis | - |
dc.subject.MESH | Air Pollution* / statistics & numerical data | - |
dc.subject.MESH | Environmental Monitoring* / methods | - |
dc.subject.MESH | Nitrogen Dioxide* / analysis | - |
dc.subject.MESH | Vehicle Emissions / analysis | - |
dc.title | Daily estimation of NO2 concentrations using digital tachograph data | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Preventive Medicine (예방의학교실) | - |
dc.contributor.googleauthor | Yoohyung Joo | - |
dc.contributor.googleauthor | Minsoo Joo | - |
dc.contributor.googleauthor | Minh Hieu Nguyen | - |
dc.contributor.googleauthor | Jiwan Hong | - |
dc.contributor.googleauthor | Changsoo Kim | - |
dc.contributor.googleauthor | Man Sing Wong | - |
dc.contributor.googleauthor | Joon Heo | - |
dc.identifier.doi | 10.1007/s10661-024-13190-0 | - |
dc.contributor.localId | A01042 | - |
dc.relation.journalcode | J00785 | - |
dc.identifier.eissn | 1573-2959 | - |
dc.identifier.pmid | 39465475 | - |
dc.identifier.url | https://link.springer.com/article/10.1007/s10661-024-13190-0 | - |
dc.subject.keyword | DTG data | - |
dc.subject.keyword | Daily estimation | - |
dc.subject.keyword | Land use regression (LUR) | - |
dc.subject.keyword | NO2 concentrations | - |
dc.subject.keyword | Spatial–temporal variation | - |
dc.contributor.alternativeName | Kim, Chang Soo | - |
dc.contributor.affiliatedAuthor | 김창수 | - |
dc.citation.volume | 196 | - |
dc.citation.number | 11 | - |
dc.citation.startPage | 1109 | - |
dc.identifier.bibliographicCitation | ENVIRONMENTAL MONITORING AND ASSESSMENT, Vol.196(11) : 1109, 2024-11 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.