0 41

Cited 0 times in

Cited 0 times in

Daily estimation of NO2 concentrations using digital tachograph data

DC Field Value Language
dc.contributor.author김창수-
dc.date.accessioned2025-07-09T08:37:53Z-
dc.date.available2025-07-09T08:37:53Z-
dc.date.issued2024-11-
dc.identifier.issn0167-6369-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/206536-
dc.description.abstractTraffic information is crucial for estimating NO2 concentrations, but it is static and limited in predicting constantly changing NO2 levels. To overcome these challenges, this study utilized real-time spatial big data to capture both the spatial and temporal fluctuations in traffic. Digital tachograph (DTG) data, sourced from digital devices in all commercial vehicles, are employed to construct a DTG land use regression (LUR) model, and its performance is compared with that of a non-DTG-LUR model. The DTG-LUR model exhibits superior performance, with an explanatory power of 0.46, in contrast to the 0.36 of the non-DTG model. This significant improvement stems from the spatially and temporally dynamic DTG variables such as cargo traffic. This study introduces a novel approach for incorporating DTG data in correlating with NO2 concentrations. It underscores the advantage of DTG data in predicting daily NO2 fluctuations at a precise 200-m grid, which is not feasible with conventional data. The findings of the study highlight the immense potential of spatial big data for fine-grained analyses, which could enable hourly predictions of air pollution.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfENVIRONMENTAL MONITORING AND ASSESSMENT-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAir Pollutants* / analysis-
dc.subject.MESHAir Pollution* / statistics & numerical data-
dc.subject.MESHEnvironmental Monitoring* / methods-
dc.subject.MESHNitrogen Dioxide* / analysis-
dc.subject.MESHVehicle Emissions / analysis-
dc.titleDaily estimation of NO2 concentrations using digital tachograph data-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Preventive Medicine (예방의학교실)-
dc.contributor.googleauthorYoohyung Joo-
dc.contributor.googleauthorMinsoo Joo-
dc.contributor.googleauthorMinh Hieu Nguyen-
dc.contributor.googleauthorJiwan Hong-
dc.contributor.googleauthorChangsoo Kim-
dc.contributor.googleauthorMan Sing Wong-
dc.contributor.googleauthorJoon Heo-
dc.identifier.doi10.1007/s10661-024-13190-0-
dc.contributor.localIdA01042-
dc.relation.journalcodeJ00785-
dc.identifier.eissn1573-2959-
dc.identifier.pmid39465475-
dc.identifier.urlhttps://link.springer.com/article/10.1007/s10661-024-13190-0-
dc.subject.keywordDTG data-
dc.subject.keywordDaily estimation-
dc.subject.keywordLand use regression (LUR)-
dc.subject.keywordNO2 concentrations-
dc.subject.keywordSpatial–temporal variation-
dc.contributor.alternativeNameKim, Chang Soo-
dc.contributor.affiliatedAuthor김창수-
dc.citation.volume196-
dc.citation.number11-
dc.citation.startPage1109-
dc.identifier.bibliographicCitationENVIRONMENTAL MONITORING AND ASSESSMENT, Vol.196(11) : 1109, 2024-11-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Preventive Medicine (예방의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.