2 21

Cited 0 times in

Early Progression Prediction in Korean Crohn's Disease Using a Korean-Specific PrediXcan Model

DC Field Value Language
dc.contributor.author천재영-
dc.date.accessioned2025-06-27T03:25:05Z-
dc.date.available2025-06-27T03:25:05Z-
dc.date.issued2025-03-
dc.identifier.issn1661-6596-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/206249-
dc.description.abstractCrohn's disease (CD) is a chronic inflammatory disorder with potential progression to stricturing (B2) or penetrating (B3) phenotypes, leading to significant complications. Early identification of patients at risk for these complications is critical for personalized management. This study aimed to develop a predictive model using clinical data and a Korean-specific transcriptome-wide association study (TWAS) to forecast early progression in CD patients. A retrospective analysis of 430 Korean CD patients from 15 hospitals was conducted. Genotyping was performed using the Korea Biobank Array, and gene expression predictions were derived from a TWAS model based on terminal ileum data. Logistic regression models incorporating clinical and gene expression data predicted progression to B2 or B3 within 24 months of diagnosis. Among the cohort, 13.9% (60 patients) progressed to B2 and 16.9% (73 patients) to B3. The combined model achieved mean area under the curve (AUC) values of 0.788 for B2 and 0.785 for B3 progression. Key predictive genes for B2 included CCDC154, FAM189A2, and TAS2R19, while PUS7, CCDC146, and MLXIP were linked to B3 progression. This integrative model provides a robust approach for identifying high-risk CD patients, potentially enabling early, targeted interventions to reduce disease progression and associated complications.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAdult-
dc.subject.MESHCrohn Disease* / diagnosis-
dc.subject.MESHCrohn Disease* / genetics-
dc.subject.MESHCrohn Disease* / pathology-
dc.subject.MESHDisease Progression-
dc.subject.MESHFemale-
dc.subject.MESHGenetic Predisposition to Disease-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHRepublic of Korea / epidemiology-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHTranscriptome-
dc.subject.MESHYoung Adult-
dc.titleEarly Progression Prediction in Korean Crohn's Disease Using a Korean-Specific PrediXcan Model-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorTae-Woo Kim-
dc.contributor.googleauthorSoo Kyung Park-
dc.contributor.googleauthorJaeyoung Chun-
dc.contributor.googleauthorSuji Kim-
dc.contributor.googleauthorChang Hwan Choi-
dc.contributor.googleauthorSang-Bum Kang-
dc.contributor.googleauthorKi Bae Bang-
dc.contributor.googleauthorTae Oh Kim-
dc.contributor.googleauthorGeom Seog Seo-
dc.contributor.googleauthorJae Myung Cha-
dc.contributor.googleauthorYunho Jung-
dc.contributor.googleauthorHyun Gun Kim-
dc.contributor.googleauthorJong Pil Im-
dc.contributor.googleauthorKwang Sung Ahn-
dc.contributor.googleauthorChang Kyun Lee-
dc.contributor.googleauthorHyo Jong Kim-
dc.contributor.googleauthorSangsoo Kim-
dc.contributor.googleauthorDong Il Park-
dc.identifier.doi10.3390/ijms26072910-
dc.contributor.localIdA05701-
dc.relation.journalcodeJ01133-
dc.identifier.eissn1422-0067-
dc.identifier.pmid40243508-
dc.subject.keywordCrohn’s disease-
dc.subject.keywordearly progression-
dc.subject.keywordmachine learning-
dc.subject.keywordpenetrating-
dc.subject.keywordstructuring-
dc.contributor.alternativeNameCheon, Jae Young-
dc.contributor.affiliatedAuthor천재영-
dc.citation.volume26-
dc.citation.number7-
dc.citation.startPage2910-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.26(7) : 2910, 2025-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.