5 9

Cited 0 times in

Digital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary

DC Field Value Language
dc.contributor.author유승찬-
dc.contributor.author이유미-
dc.contributor.author홍남기-
dc.date.accessioned2025-06-27T03:06:57Z-
dc.date.available2025-06-27T03:06:57Z-
dc.date.issued2025-03-
dc.identifier.issn0513-5796-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/206145-
dc.description.abstractPurpose: Rare diseases occur in <50 per 100000 people and require lifelong management. However, essential epidemiological data on such diseases are lacking, and a consecutive monitoring system across time and regions remains to be established. Standardized digital phenotypes are required to leverage an international data network for research on rare endocrine diseases. We developed digital phenotypes for rare endocrine diseases using the observational medical outcome partnership common data model. Materials and methods: Digital phenotypes of three rare endocrine diseases (medullary thyroid cancer, hypoparathyroidism, pheochromocytoma/paraganglioma) were validated across three databases that use different vocabularies: Severance Hospital's electronic health record from South Korea; IQVIA's United Kingdom (UK) database for general practitioners; and IQVIA's United States (US) hospital database for general hospitals. We estimated the performance of different digital phenotyping methods based on International Classification of Diseases (ICD)-10 in the UK and the US or systematized nomenclature of medicine clinical terms (SNOMED CT) in Korea. Results: The positive predictive value of digital phenotyping was higher using SNOMED CT-based phenotyping than ICD-10-based phenotyping for all three diseases in Korea (e.g., pheochromocytoma/paraganglioma: ICD-10, 58%-62%; SNOMED CT, 89%). Estimated incidence rates by digital phenotyping were as follows: medullary thyroid cancer, 0.34-2.07 (Korea), 0.13-0.30 (US); hypoparathyroidism, 0.40-1.20 (Korea), 0.59-1.01 (US), 0.00-1.78 (UK); and pheochromocytoma/paraganglioma, 0.95-1.67 (Korea), 0.35-0.77 (US), 0.00-0.49 (UK). Conclusion: Our findings demonstrate the feasibility of developing digital phenotyping of rare endocrine diseases and highlight the importance of implementing SNOMED CT in routine clinical practice to provide granularity for research.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherYonsei University-
dc.relation.isPartOfYONSEI MEDICAL JOURNAL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHCarcinoma, Neuroendocrine-
dc.subject.MESHDatabases, Factual-
dc.subject.MESHElectronic Health Records-
dc.subject.MESHEndocrine System Diseases* / diagnosis-
dc.subject.MESHHumans-
dc.subject.MESHInternational Classification of Diseases-
dc.subject.MESHPhenotype-
dc.subject.MESHPheochromocytoma-
dc.subject.MESHRare Diseases* / epidemiology-
dc.subject.MESHRepublic of Korea-
dc.subject.MESHSystematized Nomenclature of Medicine-
dc.subject.MESHThyroid Neoplasms-
dc.subject.MESHUnited Kingdom-
dc.titleDigital Phenotyping of Rare Endocrine Diseases Across International Data Networks and the Effect of Granularity of Original Vocabulary-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Biomedical Systems Informatics (의생명시스템정보학교실)-
dc.contributor.googleauthorSeunghyun Lee-
dc.contributor.googleauthorNamki Hong-
dc.contributor.googleauthorGyu Seop Kim-
dc.contributor.googleauthorJing Li-
dc.contributor.googleauthorXiaoyu Lin-
dc.contributor.googleauthorSarah Seager-
dc.contributor.googleauthorSungjae Shin-
dc.contributor.googleauthorKyoung Jin Kim-
dc.contributor.googleauthorJae Hyun Bae-
dc.contributor.googleauthorSeng Chan You-
dc.contributor.googleauthorYumie Rhee-
dc.contributor.googleauthorSin Gon Kim-
dc.identifier.doi10.3349/ymj.2023.0628-
dc.contributor.localIdA02478-
dc.contributor.localIdA03012-
dc.contributor.localIdA04388-
dc.relation.journalcodeJ02813-
dc.identifier.eissn1976-2437-
dc.identifier.pmid39999994-
dc.subject.keywordCommon data model-
dc.subject.keyworddigital phenotyping-
dc.subject.keywordhypoparathyroidism-
dc.subject.keywordmedullary thyroid cancer-
dc.subject.keywordpheochromocytoma-
dc.subject.keywordrare diseases-
dc.contributor.alternativeNameYou, Seng Chan-
dc.contributor.affiliatedAuthor유승찬-
dc.contributor.affiliatedAuthor이유미-
dc.contributor.affiliatedAuthor홍남기-
dc.citation.volume66-
dc.citation.number3-
dc.citation.startPage187-
dc.citation.endPage194-
dc.identifier.bibliographicCitationYONSEI MEDICAL JOURNAL, Vol.66(3) : 187-194, 2025-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.