0 75

Cited 0 times in

Artificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: a multi-national study

DC Field Value Language
dc.contributor.author김대훈-
dc.contributor.author김태훈-
dc.contributor.author박희남-
dc.contributor.author엄재선-
dc.contributor.author유승찬-
dc.contributor.author유희태-
dc.contributor.author이문형-
dc.contributor.author정보영-
dc.date.accessioned2025-05-02T00:16:26Z-
dc.date.available2025-05-02T00:16:26Z-
dc.date.issued2025-03-
dc.identifier.issn0195-668X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/205336-
dc.description.abstractBackground and aims: Artificial intelligence (AI) algorithms in 12-lead electrocardiogram (ECG) provides promising age prediction methods. This study investigated whether the discrepancy between ECG-derived AI-predicted age (AI-ECG age) and chronological age, termed electrocardiographic aging (ECG aging), is associated with atrial fibrillation (AF) risk. Methods: An AI-ECG age prediction model was developed using a large-scale dataset (1 533 042 ECGs from 689 639 participants) and validated with six independent and multi-national datasets (737 133 ECGs from 330 794 participants). The AI-ECG age gap was calculated across two South Korean cohorts [mean (standard deviation) follow-up: 4.1 (4.3) years for 111 483 participants and 6.1 (3.8) years for 37 517 participants], one UK cohort [3.0 (1.6) years; 40 973 participants], and one US cohort [12.9 (8.6) years; 90 639 participants]. Participants were classified into two groups: normal group (age gap < 7 years) and ECG-aged group (age gap ≥ 7 years). The predictive capability of ECG aging for new- and early-onset AF risk was assessed. Results: The mean AI-ECG ages were 51.9 (16.2), 47.4 (12.5), 68.4 (7.8), and 56.7 (14.6) years with age gaps of .0 (6.8), -.1 (6.0), 4.7 (8.7), and -1.4 (8.9) years in the two South Korean, UK, and US cohorts, respectively. In the ECG-aged group, increased risks of new-onset AF were observed with hazard ratios (95% confidence intervals) of 2.50 (2.24-2.78), 1.89 (1.46-2.43), 1.90 (1.55-2.33), and 1.76 (1.67-1.86) in the two South Korean, UK, and US cohorts, respectively. For early-onset AF, odds ratios were 2.89 (2.47-3.37), 1.94 (1.39-2.70), 1.58 (1.06-2.35), and 1.79 (1.62-1.97) in these cohorts compared with the normal group. Conclusions: The AI-derived ECG aging was associated with the risk of new- and early-onset AF, suggesting its potential utility to identify individuals for AF prevention across diverse populations.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherOxford University Press-
dc.relation.isPartOfEUROPEAN HEART JOURNAL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAdult-
dc.subject.MESHAged-
dc.subject.MESHAging* / physiology-
dc.subject.MESHAlgorithms-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHAtrial Fibrillation* / diagnosis-
dc.subject.MESHAtrial Fibrillation* / epidemiology-
dc.subject.MESHAtrial Fibrillation* / physiopathology-
dc.subject.MESHElectrocardiography* / methods-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHRepublic of Korea / epidemiology-
dc.subject.MESHRisk Assessment / methods-
dc.subject.MESHRisk Factors-
dc.subject.MESHUnited Kingdom / epidemiology-
dc.subject.MESHUnited States / epidemiology-
dc.titleArtificial intelligence-derived electrocardiographic aging and risk of atrial fibrillation: a multi-national study-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorSeunghoon Cho-
dc.contributor.googleauthorSujeong Eom-
dc.contributor.googleauthorDaehoon Kim-
dc.contributor.googleauthorTae-Hoon Kim-
dc.contributor.googleauthorJae-Sun Uhm-
dc.contributor.googleauthorHui-Nam Pak-
dc.contributor.googleauthorMoon-Hyoung Lee-
dc.contributor.googleauthorPil-Sung Yang-
dc.contributor.googleauthorEunjung Lee-
dc.contributor.googleauthorZachi Itzhak Attia-
dc.contributor.googleauthorPaul Andrew Friedman-
dc.contributor.googleauthorSeng Chan You-
dc.contributor.googleauthorHee Tae Yu-
dc.contributor.googleauthorBoyoung Joung-
dc.identifier.doi10.1093/eurheartj/ehae790-
dc.contributor.localIdA00373-
dc.contributor.localIdA01085-
dc.contributor.localIdA01776-
dc.contributor.localIdA02337-
dc.contributor.localIdA02478-
dc.contributor.localIdA02535-
dc.contributor.localIdA02766-
dc.contributor.localIdA03609-
dc.relation.journalcodeJ00805-
dc.identifier.eissn1522-9645-
dc.identifier.pmid39626169-
dc.identifier.urlhttps://academic.oup.com/eurheartj/article/46/9/839/7913995-
dc.subject.keywordAging-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordAtrial fibrillation-
dc.subject.keywordElectrocardiogram-
dc.subject.keywordPolygenic risk score-
dc.contributor.alternativeNameKim, Dae Hoon-
dc.contributor.affiliatedAuthor김대훈-
dc.contributor.affiliatedAuthor김태훈-
dc.contributor.affiliatedAuthor박희남-
dc.contributor.affiliatedAuthor엄재선-
dc.contributor.affiliatedAuthor유승찬-
dc.contributor.affiliatedAuthor유희태-
dc.contributor.affiliatedAuthor이문형-
dc.contributor.affiliatedAuthor정보영-
dc.citation.volume46-
dc.citation.number9-
dc.citation.startPage839-
dc.citation.endPage852-
dc.identifier.bibliographicCitationEUROPEAN HEART JOURNAL, Vol.46(9) : 839-852, 2025-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.