Cited 0 times in

Machine Learning-Enabled Non-Invasive Screening of Tumor-Associated Circulating Transcripts for Early Detection of Colorectal Cancer

DC Field Value Language
dc.contributor.author김태일-
dc.contributor.author박재준-
dc.date.accessioned2025-05-02T00:13:57Z-
dc.date.available2025-05-02T00:13:57Z-
dc.date.issued2025-02-
dc.identifier.issn1661-6596-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/205319-
dc.description.abstractColorectal cancer (CRC) is a major cause of cancer-related mortality, highlighting the need for accurate and non-invasive diagnostics. This study assessed the utility of tumor-associated circulating transcripts (TACTs) as biomarkers for CRC detection and integrated these markers into machine learning models to enhance diagnostic performance. We evaluated five models-Generalized Linear Model, Random Forest, Gradient Boosting Machine, Deep Neural Network (DNN), and AutoML-and identified the DNN model as optimal owing to its high sensitivity (85.7%) and specificity (90.9%) for CRC detection, particularly in early-stage cases. Our findings suggest that combining TACT markers with AI-based analysis provides a scalable and precise approach for CRC screening, offering significant advancements in non-invasive cancer diagnostics to improve early detection and patient outcomes.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherMDPI-
dc.relation.isPartOfINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHBiomarkers, Tumor* / blood-
dc.subject.MESHBiomarkers, Tumor* / genetics-
dc.subject.MESHColorectal Neoplasms* / blood-
dc.subject.MESHColorectal Neoplasms* / diagnosis-
dc.subject.MESHColorectal Neoplasms* / genetics-
dc.subject.MESHEarly Detection of Cancer* / methods-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMachine Learning*-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNeural Networks, Computer-
dc.titleMachine Learning-Enabled Non-Invasive Screening of Tumor-Associated Circulating Transcripts for Early Detection of Colorectal Cancer-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorJin Han-
dc.contributor.googleauthorSunyoung Park-
dc.contributor.googleauthorLi Ah Kim-
dc.contributor.googleauthorSung Hee Chung-
dc.contributor.googleauthorTae Il Kim-
dc.contributor.googleauthorJae Myun Lee-
dc.contributor.googleauthorJong Koo Kim-
dc.contributor.googleauthorJae Jun Park-
dc.contributor.googleauthorHyeyoung Lee-
dc.identifier.doi10.3390/ijms26041477-
dc.contributor.localIdA01079-
dc.contributor.localIdA01636-
dc.relation.journalcodeJ01133-
dc.identifier.eissn1422-0067-
dc.identifier.pmid40003943-
dc.subject.keywordcancer biomarkers-
dc.subject.keywordcolorectal cancer-
dc.subject.keyworddeep neural network-
dc.subject.keywordmachine learning-
dc.subject.keywordnon-invasive cancer diagnosis-
dc.subject.keywordqPCR-
dc.subject.keywordtumor-associated circulating transcripts blood-based assay-
dc.contributor.alternativeNameKim, Tae Il-
dc.contributor.affiliatedAuthor김태일-
dc.contributor.affiliatedAuthor박재준-
dc.citation.volume26-
dc.citation.number4-
dc.citation.startPage1477-
dc.identifier.bibliographicCitationINTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.26(4) : 1477, 2025-02-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.