Cited 0 times in
Machine Learning-Enabled Non-Invasive Screening of Tumor-Associated Circulating Transcripts for Early Detection of Colorectal Cancer
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김태일 | - |
dc.contributor.author | 박재준 | - |
dc.date.accessioned | 2025-05-02T00:13:57Z | - |
dc.date.available | 2025-05-02T00:13:57Z | - |
dc.date.issued | 2025-02 | - |
dc.identifier.issn | 1661-6596 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/205319 | - |
dc.description.abstract | Colorectal cancer (CRC) is a major cause of cancer-related mortality, highlighting the need for accurate and non-invasive diagnostics. This study assessed the utility of tumor-associated circulating transcripts (TACTs) as biomarkers for CRC detection and integrated these markers into machine learning models to enhance diagnostic performance. We evaluated five models-Generalized Linear Model, Random Forest, Gradient Boosting Machine, Deep Neural Network (DNN), and AutoML-and identified the DNN model as optimal owing to its high sensitivity (85.7%) and specificity (90.9%) for CRC detection, particularly in early-stage cases. Our findings suggest that combining TACT markers with AI-based analysis provides a scalable and precise approach for CRC screening, offering significant advancements in non-invasive cancer diagnostics to improve early detection and patient outcomes. | - |
dc.description.statementOfResponsibility | open | - |
dc.language | English | - |
dc.publisher | MDPI | - |
dc.relation.isPartOf | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Aged | - |
dc.subject.MESH | Biomarkers, Tumor* / blood | - |
dc.subject.MESH | Biomarkers, Tumor* / genetics | - |
dc.subject.MESH | Colorectal Neoplasms* / blood | - |
dc.subject.MESH | Colorectal Neoplasms* / diagnosis | - |
dc.subject.MESH | Colorectal Neoplasms* / genetics | - |
dc.subject.MESH | Early Detection of Cancer* / methods | - |
dc.subject.MESH | Female | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Machine Learning* | - |
dc.subject.MESH | Male | - |
dc.subject.MESH | Middle Aged | - |
dc.subject.MESH | Neural Networks, Computer | - |
dc.title | Machine Learning-Enabled Non-Invasive Screening of Tumor-Associated Circulating Transcripts for Early Detection of Colorectal Cancer | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Internal Medicine (내과학교실) | - |
dc.contributor.googleauthor | Jin Han | - |
dc.contributor.googleauthor | Sunyoung Park | - |
dc.contributor.googleauthor | Li Ah Kim | - |
dc.contributor.googleauthor | Sung Hee Chung | - |
dc.contributor.googleauthor | Tae Il Kim | - |
dc.contributor.googleauthor | Jae Myun Lee | - |
dc.contributor.googleauthor | Jong Koo Kim | - |
dc.contributor.googleauthor | Jae Jun Park | - |
dc.contributor.googleauthor | Hyeyoung Lee | - |
dc.identifier.doi | 10.3390/ijms26041477 | - |
dc.contributor.localId | A01079 | - |
dc.contributor.localId | A01636 | - |
dc.relation.journalcode | J01133 | - |
dc.identifier.eissn | 1422-0067 | - |
dc.identifier.pmid | 40003943 | - |
dc.subject.keyword | cancer biomarkers | - |
dc.subject.keyword | colorectal cancer | - |
dc.subject.keyword | deep neural network | - |
dc.subject.keyword | machine learning | - |
dc.subject.keyword | non-invasive cancer diagnosis | - |
dc.subject.keyword | qPCR | - |
dc.subject.keyword | tumor-associated circulating transcripts blood-based assay | - |
dc.contributor.alternativeName | Kim, Tae Il | - |
dc.contributor.affiliatedAuthor | 김태일 | - |
dc.contributor.affiliatedAuthor | 박재준 | - |
dc.citation.volume | 26 | - |
dc.citation.number | 4 | - |
dc.citation.startPage | 1477 | - |
dc.identifier.bibliographicCitation | INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, Vol.26(4) : 1477, 2025-02 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.