Cited 0 times in

Lung Cancer Risk Prediction Models for Asian Ever-Smokers

DC Field Value Language
dc.contributor.author오희철-
dc.date.accessioned2025-03-13T17:01:50Z-
dc.date.available2025-03-13T17:01:50Z-
dc.date.issued2024-03-
dc.identifier.issn1556-0864-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/204313-
dc.description.abstractIntroduction: Although lung cancer prediction models are widely used to support risk-based screening, their performance outside Western populations remains uncertain. This study aims to evaluate the performance of 11 existing risk prediction models in multiple Asian populations and to refit prediction models for Asians. Methods: In a pooled analysis of 186,458 Asian ever-smokers from 19 prospective cohorts, we assessed calibration (expected-to-observed ratio) and discrimination (area under the receiver operating characteristic curve [AUC]) for each model. In addition, we developed the "Shanghai models" to better refine risk models for Asians on the basis of two well-characterized population-based prospective cohorts and externally validated them in other Asian cohorts. Results: Among the 11 models, the Lung Cancer Death Risk Assessment Tool yielded the highest AUC (AUC [95% confidence interval (CI)] = 0.71 [0.67-0.74] for lung cancer death and 0.69 [0.67-0.72] for lung cancer incidence) and the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Model had good calibration overall (expected-to-observed ratio [95% CI] = 1.06 [0.90-1.25]). Nevertheless, these models substantially underestimated lung cancer risk among Asians who reported less than 10 smoking pack-years or stopped smoking more than or equal to 20 years ago. The Shanghai models were found to have marginal improvement overall in discrimination (AUC [95% CI] = 0.72 [0.69-0.74] for lung cancer death and 0.70 [0.67-0.72] for lung cancer incidence) but consistently outperformed the selected Western models among low-intensity smokers and long-term quitters. Conclusions: The Shanghai models had comparable performance overall to the best existing models, but they improved much in predicting the lung cancer risk of low-intensity smokers and long-term quitters in Asia.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfJOURNAL OF THORACIC ONCOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHChina / epidemiology-
dc.subject.MESHEarly Detection of Cancer-
dc.subject.MESHHumans-
dc.subject.MESHLung-
dc.subject.MESHLung Neoplasms* / diagnosis-
dc.subject.MESHMale-
dc.subject.MESHProspective Studies-
dc.subject.MESHRisk Assessment-
dc.subject.MESHRisk Factors-
dc.subject.MESHSmokers-
dc.titleLung Cancer Risk Prediction Models for Asian Ever-Smokers-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Preventive Medicine (예방의학교실)-
dc.contributor.googleauthorJae Jeong Yang-
dc.contributor.googleauthorWanqing Wen-
dc.contributor.googleauthorHana Zahed-
dc.contributor.googleauthorWei Zheng-
dc.contributor.googleauthorQing Lan-
dc.contributor.googleauthorSarah K Abe-
dc.contributor.googleauthorMd Shafiur Rahman-
dc.contributor.googleauthorMd Rashedul Islam-
dc.contributor.googleauthorEiko Saito-
dc.contributor.googleauthorPrakash C Gupta-
dc.contributor.googleauthorAkiko Tamakoshi-
dc.contributor.googleauthorWoon-Puay Koh-
dc.contributor.googleauthorYu-Tang Gao-
dc.contributor.googleauthorRitsu Sakata-
dc.contributor.googleauthorIchiro Tsuji-
dc.contributor.googleauthorReza Malekzadeh-
dc.contributor.googleauthorYumi Sugawara-
dc.contributor.googleauthorJeongseon Kim-
dc.contributor.googleauthorHidemi Ito-
dc.contributor.googleauthorChisato Nagata-
dc.contributor.googleauthorSan-Lin You-
dc.contributor.googleauthorSue K Park-
dc.contributor.googleauthorJian-Min Yuan-
dc.contributor.googleauthorMyung-Hee Shin-
dc.contributor.googleauthorSun-Seog Kweon-
dc.contributor.googleauthorSang-Wook Yi-
dc.contributor.googleauthorMangesh S Pednekar-
dc.contributor.googleauthorTakashi Kimura-
dc.contributor.googleauthorHui Cai-
dc.contributor.googleauthorYukai Lu-
dc.contributor.googleauthorArash Etemadi-
dc.contributor.googleauthorSeiki Kanemura-
dc.contributor.googleauthorKeiko Wada-
dc.contributor.googleauthorChien-Jen Chen-
dc.contributor.googleauthorAesun Shin-
dc.contributor.googleauthorRenwei Wang-
dc.contributor.googleauthorYoon-Ok Ahn-
dc.contributor.googleauthorMin-Ho Shin-
dc.contributor.googleauthorHeechoul Ohrr-
dc.contributor.googleauthorMahdi Sheikh-
dc.contributor.googleauthorBatel Blechter-
dc.contributor.googleauthorHabibul Ahsan-
dc.contributor.googleauthorPaolo Boffetta-
dc.contributor.googleauthorKee Seng Chia-
dc.contributor.googleauthorKeitaro Matsuo-
dc.contributor.googleauthorYou-Lin Qiao-
dc.contributor.googleauthorNathaniel Rothman-
dc.contributor.googleauthorManami Inoue-
dc.contributor.googleauthorDaehee Kang-
dc.contributor.googleauthorHilary A Robbins-
dc.contributor.googleauthorXiao-Ou Shu-
dc.identifier.doi10.1016/j.jtho.2023.11.002-
dc.contributor.localIdA02419-
dc.relation.journalcodeJ01909-
dc.identifier.eissn1556-1380-
dc.identifier.pmid37944700-
dc.subject.keywordAsia-
dc.subject.keywordCalibration-
dc.subject.keywordCohort-
dc.subject.keywordDiscrimination-
dc.subject.keywordLung cancer-
dc.subject.keywordRisk prediction model-
dc.contributor.alternativeNameOhrr, Hee Choul-
dc.contributor.affiliatedAuthor오희철-
dc.citation.volume19-
dc.citation.number3-
dc.citation.startPage451-
dc.citation.endPage464-
dc.identifier.bibliographicCitationJOURNAL OF THORACIC ONCOLOGY, Vol.19(3) : 451-464, 2024-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Preventive Medicine (예방의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.