Cited 0 times in

Automated Patient-Specific Pneumoperitoneum Model Reconstruction for Surgical Navigation Systems in Distal Gastrectomy

DC Field Value Language
dc.contributor.author형우진-
dc.date.accessioned2025-02-03T09:18:47Z-
dc.date.available2025-02-03T09:18:47Z-
dc.date.issued2024-10-
dc.identifier.issn0302-9743-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/202375-
dc.description.abstractThe development of surgical navigation systems is critical in computer-aided surgery for achieving precision surgery. This study introduces an innovative framework for reconstructing patient-specific pneumoperitoneum models in Minimally Invasive Gastrointestinal Surgery (MIGS) navigation systems. Leveraging preoperative CT images and intraoperative 3D scan landmark data from 210 gastric cancer patients, we propose a data-driven approach to pneumoperitoneum reconstruction. Unlike conventional physics-based methods, our framework utilizes landmark displacement regression models to capture patient-specific deformation information. Furthermore, we utilize a CNN-based model to extract fat and muscle area from CT images and train the displacement regression model to reflect patient-specific characteristics. The efficacy of our approach is evaluated through comprehensive evaluation using traditional statistical and neural networks-based methods approaches. The code for reproducibility is available at github.com/PRIME-MICCAI24-APSP/APSP.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfLecture Notes in Computer Science-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleAutomated Patient-Specific Pneumoperitoneum Model Reconstruction for Surgical Navigation Systems in Distal Gastrectomy-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Surgery (외과학교실)-
dc.contributor.googleauthorSaebom Shin-
dc.contributor.googleauthorHye-su Jin-
dc.contributor.googleauthorKyungyoon Jung-
dc.contributor.googleauthorBokyung Park-
dc.contributor.googleauthorJihun Yoon-
dc.contributor.googleauthorSungjae Kim-
dc.contributor.googleauthorJung-Eun Park-
dc.contributor.googleauthorHelen Hong-
dc.contributor.googleauthorHansol Choi-
dc.contributor.googleauthorSeokrae Park-
dc.contributor.googleauthorYoungno Yoon-
dc.contributor.googleauthorYoo Min Kim-
dc.contributor.googleauthorMin-Kook Choi-
dc.contributor.googleauthorWoo Jin Hyung-
dc.identifier.doi10.1007/978-3-031-74561-4_7-
dc.contributor.localIdA04382-
dc.relation.journalcodeJ02160-
dc.identifier.urlhttps://link.springer.com/chapter/10.1007/978-3-031-74561-4_7-
dc.contributor.alternativeNameHyung, Woo Jin-
dc.contributor.affiliatedAuthor형우진-
dc.citation.volume15155 LNCS-
dc.citation.startPage74-
dc.citation.endPage85-
dc.identifier.bibliographicCitationLecture Notes in Computer Science, Vol.15155 LNCS : 74-85, 2024-10-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Surgery (외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.