0 93

Cited 0 times in

Cited 4 times in

Development of Clinically Validated Artificial fi cial Intelligence Model for Detecting ST-segment Elevation Myocardial Infarction

DC Field Value Language
dc.contributor.author고영국-
dc.contributor.author김병극-
dc.contributor.author최동훈-
dc.contributor.author홍명기-
dc.contributor.author김중선-
dc.contributor.author안철민-
dc.contributor.author홍성진-
dc.contributor.author이승준-
dc.contributor.author유승찬-
dc.contributor.author이상협-
dc.date.accessioned2025-02-03T09:18:23Z-
dc.date.available2025-02-03T09:18:23Z-
dc.date.issued2024-11-
dc.identifier.issn0196-0644-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/202371-
dc.description.abstractStudy objective: Although the importance of primary percutaneous coronary intervention has been emphasized for ST-segment elevation myocardial infarction (STEMI), the appropriateness of the cardiac catheterization laboratory activation remains suboptimal. This study aimed to develop a precise artificial intelligence (AI) model for the diagnosis of STEMI and accurate cardiac catheterization laboratory activation. Methods: We used electrocardiography (ECG) waveform data from a prospective percutaneous coronary intervention registry in Korea in this study. Two independent board-certified cardiologists established a criterion standard (STEMI or Not STEMI) for each ECG based on corresponding coronary angiography data. We developed a deep ensemble model by combining 5 convolutional neural networks. In addition, we performed clinical validation based on a symptom-based ECG data set, comparisons with clinical physicians, and external validation. Results: We used 18,697 ECGs for the model development data set, and 1,745 (9.3%) were STEMI. The AI model achieved an accuracy of 92.1%, sensitivity of 95.4%, and specificity of 91.8 %. The performances of the AI model were well balanced and outstanding in the clinical validation, comparison with clinical physicians, and the external validation. Conclusion: The deep ensemble AI model showed a well-balanced and outstanding performance. As visualized with gradient-weighted class activation mapping, the AI model has a reasonable explainability. Further studies with prospective validation regarding clinical benefit in a real-world setting should be warranted.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherMosby-
dc.relation.isPartOfANNALS OF EMERGENCY MEDICINE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHCoronary Angiography-
dc.subject.MESHElectrocardiography*-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHNeural Networks, Computer-
dc.subject.MESHPercutaneous Coronary Intervention-
dc.subject.MESHProspective Studies-
dc.subject.MESHRegistries-
dc.subject.MESHRepublic of Korea-
dc.subject.MESHST Elevation Myocardial Infarction* / diagnosis-
dc.subject.MESHST Elevation Myocardial Infarction* / diagnostic imaging-
dc.subject.MESHSensitivity and Specificity-
dc.titleDevelopment of Clinically Validated Artificial fi cial Intelligence Model for Detecting ST-segment Elevation Myocardial Infarction-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorSang-Hyup Lee-
dc.contributor.googleauthorKyu Lee Jeon-
dc.contributor.googleauthorYong-Joon Lee-
dc.contributor.googleauthorSeng Chan You-
dc.contributor.googleauthorSeung-Jun Lee-
dc.contributor.googleauthorSung-Jin Hong-
dc.contributor.googleauthorChul-Min Ahn-
dc.contributor.googleauthorJung-Sun Kim-
dc.contributor.googleauthorByeong-Keuk Kim-
dc.contributor.googleauthorYoung-Guk Ko-
dc.contributor.googleauthorDonghoon Choi-
dc.contributor.googleauthorMyeong-Ki Hong-
dc.identifier.doi10.1016/j.annemergmed.2024.06.004-
dc.contributor.localIdA00127-
dc.contributor.localIdA00493-
dc.contributor.localIdA04053-
dc.contributor.localIdA04391-
dc.relation.journalcodeJ03110-
dc.identifier.eissn1097-6760-
dc.identifier.pmid39066765-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0196064424003275-
dc.contributor.alternativeNameKo, Young Guk-
dc.contributor.affiliatedAuthor고영국-
dc.contributor.affiliatedAuthor김병극-
dc.contributor.affiliatedAuthor최동훈-
dc.contributor.affiliatedAuthor홍명기-
dc.citation.volume84-
dc.citation.number5-
dc.citation.startPage540-
dc.citation.endPage548-
dc.identifier.bibliographicCitationANNALS OF EMERGENCY MEDICINE, Vol.84(5) : 540-548, 2024-11-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.