Cited 0 times in

Radiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis

DC Field Value Language
dc.contributor.author김동욱-
dc.contributor.author김진성-
dc.contributor.author김창환-
dc.contributor.author김호진-
dc.contributor.author이호-
dc.contributor.author한민철-
dc.contributor.author홍채선-
dc.date.accessioned2025-02-03T08:04:45Z-
dc.date.available2025-02-03T08:04:45Z-
dc.date.issued2024-07-
dc.identifier.issn1120-1797-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/201540-
dc.description.abstractPurpose: This study reviewed and meta-analyzed evidence on radiomics-based hybrid models for predicting radiation pneumonitis (RP). These models are crucial for improving thoracic radiotherapy plans and mitigating RP, a common complication of thoracic radiotherapy. We examined and compared the RP prediction models developed in these studies with the radiomics features employed in RP models. Methods: We systematically searched Google Scholar, Embase, PubMed, and MEDLINE for studies published up to April 19, 2024. Sixteen studies met the inclusion criteria. We compared the RP prediction models developed in these studies and the radiomics features employed. Results: Radiomics, as a single-factor evaluation, achieved an area under the receiver operating characteristic curve (AUROC) of 0.73, accuracy of 0.69, sensitivity of 0.64, and specificity of 0.74. Dosiomics achieved an AUROC of 0.70. Clinical and dosimetric factors showed lower performance, with AUROCs of 0.59 and 0.58. Combining clinical and radiomic factors yielded an AUROC of 0.78, while combining dosiomic and radiomics factors produced an AUROC of 0.81. Triple combinations, including clinical, dosimetric, and radiomics factors, achieved an AUROC of 0.81. The study identifies key radiomics features, such as the Gray Level Co-occurrence Matrix (GLCM) and Gray Level Size Zone Matrix (GLSZM), which enhance the predictive accuracy of RP models. Conclusions: Radiomics-based hybrid models are highly effective in predicting RP. These models, combining traditional predictive factors with radiomic features, particularly GLCM and GLSZM, offer a clinically feasible approach for identifying patients at higher RP risk. This approach enhances clinical outcomes and improves patient quality of life. Protocol registration: The protocol of this study was registered on PROSPERO (CRD42023426565).-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherIstituti Editoriali e Poligrafici Internazionali-
dc.relation.isPartOfPHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHHumans-
dc.subject.MESHRadiation Pneumonitis* / diagnostic imaging-
dc.subject.MESHRadiation Pneumonitis* / etiology-
dc.subject.MESHRadiomics-
dc.titleRadiomics-based hybrid model for predicting radiation pneumonitis: A systematic review and meta-analysis-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorHeesoon Sheen-
dc.contributor.googleauthorWonyoung Cho-
dc.contributor.googleauthorChanghwan Kim-
dc.contributor.googleauthorMin Cheol Han-
dc.contributor.googleauthorHojin Kim-
dc.contributor.googleauthorHo Lee-
dc.contributor.googleauthorDong Wook Kim-
dc.contributor.googleauthorJin Sung Kim-
dc.contributor.googleauthorChae-Seon Hong-
dc.identifier.doi10.1016/j.ejmp.2024.103414-
dc.contributor.localIdA05710-
dc.contributor.localIdA04548-
dc.contributor.localIdA06353-
dc.contributor.localIdA05970-
dc.contributor.localIdA03323-
dc.contributor.localIdA05870-
dc.contributor.localIdA05846-
dc.relation.journalcodeJ02892-
dc.identifier.eissn1724-191X-
dc.identifier.pmid38906047-
dc.subject.keywordDosiomics-
dc.subject.keywordMeta-analysis-
dc.subject.keywordPrediction model-
dc.subject.keywordRadiation pneumonitis-
dc.subject.keywordRadiomics-
dc.subject.keywordRadiotherapy-
dc.contributor.alternativeNameKim, Dong Wook-
dc.contributor.affiliatedAuthor김동욱-
dc.contributor.affiliatedAuthor김진성-
dc.contributor.affiliatedAuthor김창환-
dc.contributor.affiliatedAuthor김호진-
dc.contributor.affiliatedAuthor이호-
dc.contributor.affiliatedAuthor한민철-
dc.contributor.affiliatedAuthor홍채선-
dc.citation.volume123-
dc.citation.startPage103414-
dc.identifier.bibliographicCitationPHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, Vol.123 : 103414, 2024-07-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.