Cited 6 times in

LLM-driven multimodal target volume contouring in radiation oncology

DC Field Value Language
dc.contributor.author김진성-
dc.contributor.author박상준-
dc.contributor.author변화경-
dc.contributor.author이익재-
dc.contributor.author조연아-
dc.date.accessioned2024-12-16T05:52:21Z-
dc.date.available2024-12-16T05:52:21Z-
dc.date.issued2024-10-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/201420-
dc.description.abstractTarget volume contouring for radiation therapy is considered significantly more challenging than the normal organ segmentation tasks as it necessitates the utilization of both image and text-based clinical information. Inspired by the recent advancement of large language models (LLMs) that can facilitate the integration of the textural information and images, here we present an LLM-driven multimodal artificial intelligence (AI), namely LLMSeg, that utilizes the clinical information and is applicable to the challenging task of 3-dimensional context-aware target volume delineation for radiation oncology. We validate our proposed LLMSeg within the context of breast cancer radiotherapy using external validation and data-insufficient environments, which attributes highly conducive to real-world applications. We demonstrate that the proposed multimodal LLMSeg exhibits markedly improved performance compared to conventional unimodal AI models, particularly exhibiting robust generalization performance and data-efficiency.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherNature Pub. Group-
dc.relation.isPartOfNATURE COMMUNICATIONS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAlgorithms-
dc.subject.MESHArtificial Intelligence*-
dc.subject.MESHBreast Neoplasms* / radiotherapy-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHImaging, Three-Dimensional / methods-
dc.subject.MESHRadiation Oncology* / methods-
dc.subject.MESHRadiotherapy Planning, Computer-Assisted / methods-
dc.subject.MESHTomography, X-Ray Computed-
dc.titleLLM-driven multimodal target volume contouring in radiation oncology-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorYujin Oh-
dc.contributor.googleauthorSangjoon Park-
dc.contributor.googleauthorHwa Kyung Byun-
dc.contributor.googleauthorYeona Cho-
dc.contributor.googleauthorIk Jae Lee-
dc.contributor.googleauthorJin Sung Kim-
dc.contributor.googleauthorJong Chul Ye-
dc.identifier.doi10.1038/s41467-024-53387-y-
dc.contributor.localIdA04548-
dc.contributor.localIdA06513-
dc.contributor.localIdA05136-
dc.contributor.localIdA03055-
dc.contributor.localIdA04680-
dc.relation.journalcodeJ02293-
dc.identifier.eissn2041-1723-
dc.identifier.pmid39448587-
dc.contributor.alternativeNameKim, Jinsung-
dc.contributor.affiliatedAuthor김진성-
dc.contributor.affiliatedAuthor박상준-
dc.contributor.affiliatedAuthor변화경-
dc.contributor.affiliatedAuthor이익재-
dc.contributor.affiliatedAuthor조연아-
dc.citation.volume15-
dc.citation.number1-
dc.citation.startPage9186-
dc.identifier.bibliographicCitationNATURE COMMUNICATIONS, Vol.15(1) : 9186, 2024-10-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.