Cited 6 times in
LLM-driven multimodal target volume contouring in radiation oncology
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 김진성 | - |
dc.contributor.author | 박상준 | - |
dc.contributor.author | 변화경 | - |
dc.contributor.author | 이익재 | - |
dc.contributor.author | 조연아 | - |
dc.date.accessioned | 2024-12-16T05:52:21Z | - |
dc.date.available | 2024-12-16T05:52:21Z | - |
dc.date.issued | 2024-10 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/201420 | - |
dc.description.abstract | Target volume contouring for radiation therapy is considered significantly more challenging than the normal organ segmentation tasks as it necessitates the utilization of both image and text-based clinical information. Inspired by the recent advancement of large language models (LLMs) that can facilitate the integration of the textural information and images, here we present an LLM-driven multimodal artificial intelligence (AI), namely LLMSeg, that utilizes the clinical information and is applicable to the challenging task of 3-dimensional context-aware target volume delineation for radiation oncology. We validate our proposed LLMSeg within the context of breast cancer radiotherapy using external validation and data-insufficient environments, which attributes highly conducive to real-world applications. We demonstrate that the proposed multimodal LLMSeg exhibits markedly improved performance compared to conventional unimodal AI models, particularly exhibiting robust generalization performance and data-efficiency. | - |
dc.description.statementOfResponsibility | open | - |
dc.format | application/pdf | - |
dc.language | English | - |
dc.publisher | Nature Pub. Group | - |
dc.relation.isPartOf | NATURE COMMUNICATIONS | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.subject.MESH | Algorithms | - |
dc.subject.MESH | Artificial Intelligence* | - |
dc.subject.MESH | Breast Neoplasms* / radiotherapy | - |
dc.subject.MESH | Female | - |
dc.subject.MESH | Humans | - |
dc.subject.MESH | Imaging, Three-Dimensional / methods | - |
dc.subject.MESH | Radiation Oncology* / methods | - |
dc.subject.MESH | Radiotherapy Planning, Computer-Assisted / methods | - |
dc.subject.MESH | Tomography, X-Ray Computed | - |
dc.title | LLM-driven multimodal target volume contouring in radiation oncology | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Radiation Oncology (방사선종양학교실) | - |
dc.contributor.googleauthor | Yujin Oh | - |
dc.contributor.googleauthor | Sangjoon Park | - |
dc.contributor.googleauthor | Hwa Kyung Byun | - |
dc.contributor.googleauthor | Yeona Cho | - |
dc.contributor.googleauthor | Ik Jae Lee | - |
dc.contributor.googleauthor | Jin Sung Kim | - |
dc.contributor.googleauthor | Jong Chul Ye | - |
dc.identifier.doi | 10.1038/s41467-024-53387-y | - |
dc.contributor.localId | A04548 | - |
dc.contributor.localId | A06513 | - |
dc.contributor.localId | A05136 | - |
dc.contributor.localId | A03055 | - |
dc.contributor.localId | A04680 | - |
dc.relation.journalcode | J02293 | - |
dc.identifier.eissn | 2041-1723 | - |
dc.identifier.pmid | 39448587 | - |
dc.contributor.alternativeName | Kim, Jinsung | - |
dc.contributor.affiliatedAuthor | 김진성 | - |
dc.contributor.affiliatedAuthor | 박상준 | - |
dc.contributor.affiliatedAuthor | 변화경 | - |
dc.contributor.affiliatedAuthor | 이익재 | - |
dc.contributor.affiliatedAuthor | 조연아 | - |
dc.citation.volume | 15 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 9186 | - |
dc.identifier.bibliographicCitation | NATURE COMMUNICATIONS, Vol.15(1) : 9186, 2024-10 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.