Cited 0 times in

Inter-scanner super-resolution of 3D cine MRI using a transfer-learning network for MRgRT

DC Field Value Language
dc.contributor.author김진성-
dc.date.accessioned2024-12-06T03:38:57Z-
dc.date.available2024-12-06T03:38:57Z-
dc.date.issued2024-05-
dc.identifier.issn0031-9155-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/201198-
dc.description.abstractObjective. Deep-learning networks for super-resolution (SR) reconstruction enhance the spatial-resolution of 3D magnetic resonance imaging (MRI) for MR-guided radiotherapy (MRgRT). However, variations between MRI scanners and patients impact the quality of SR for real-time 3D low-resolution (LR) cine MRI. In this study, we present a personalized super-resolution (psSR) network that incorporates transfer-learning to overcome the challenges in inter-scanner SR of 3D cine MRI. Approach: Development of the proposed psSR network comprises two-stages: (1) a cohort-specific SR (csSR) network using clinical patient datasets, and (2) a psSR network using transfer-learning to target datasets. The csSR network was developed by training on breath-hold and respiratory-gated high-resolution (HR) 3D MRIs and their k-space down-sampled LR MRIs from 53 thoracoabdominal patients scanned at 1.5 T. The psSR network was developed through transfer-learning to retrain the csSR network using a single breath-hold HR MRI and a corresponding 3D cine MRI from 5 healthy volunteers scanned at 0.55 T. Image quality was evaluated using the peak-signal-noise-ratio (PSNR) and the structure-similarity-index-measure (SSIM). The clinical feasibility was assessed by liver contouring on the psSR MRI using an auto-segmentation network and quantified using the dice-similarity-coefficient (DSC). Results. Mean PSNR and SSIM values of psSR MRIs were increased by 57.2% (13.8-21.7) and 94.7% (0.38-0.74) compared to cine MRIs, with the reference 0.55 T breath-hold HR MRI. In the contour evaluation, DSC was increased by 15% (0.79-0.91). Average time consumed for transfer-learning was 90 s, psSR was 4.51 ms per volume, and auto-segmentation was 210 ms, respectively. Significance. The proposed psSR reconstruction substantially increased image and segmentation quality of cine MRI in an average of 215 ms across the scanners and patients with less than 2 min of prerequisite transfer-learning. This approach would be effective in overcoming cohort- and scanner-dependency of deep-learning for MRgRT.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherIOP Publishing-
dc.relation.isPartOfPHYSICS IN MEDICINE AND BIOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHDeep Learning-
dc.subject.MESHHumans-
dc.subject.MESHImaging, Three-Dimensional* / methods-
dc.subject.MESHMagnetic Resonance Imaging, Cine* / methods-
dc.subject.MESHRadiotherapy, Image-Guided / methods-
dc.titleInter-scanner super-resolution of 3D cine MRI using a transfer-learning network for MRgRT-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorYoung Hun Yoon-
dc.contributor.googleauthorJaehee Chun-
dc.contributor.googleauthorKendall Kiser-
dc.contributor.googleauthorShanti Marasini-
dc.contributor.googleauthorAusten Curcuru-
dc.contributor.googleauthorH Michael Gach-
dc.contributor.googleauthorJin Sung Kim-
dc.contributor.googleauthorTaeho Kim-
dc.identifier.doi10.1088/1361-6560/ad43ab-
dc.contributor.localIdA04548-
dc.relation.journalcodeJ02523-
dc.identifier.eissn1361-6560-
dc.identifier.pmid38663411-
dc.identifier.urlhttps://iopscience.iop.org/article/10.1088/1361-6560/ad43ab-
dc.subject.keyword3D cine MRI-
dc.subject.keywordMR-guided radiotherapy-
dc.subject.keywordauto-segmentation-
dc.subject.keywordpersonalized network-
dc.subject.keywordreal-time-
dc.subject.keywordsuper-resolution-
dc.contributor.alternativeNameKim, Jinsung-
dc.contributor.affiliatedAuthor김진성-
dc.citation.volume69-
dc.citation.number11-
dc.identifier.bibliographicCitationPHYSICS IN MEDICINE AND BIOLOGY, Vol.69(11), 2024-05-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.