Cited 0 times in

Developing a comprehensive molecular subgrouping model for cervical cancer using machine learning

DC Field Value Language
dc.contributor.author김재훈-
dc.contributor.author조한별-
dc.contributor.author윤희-
dc.date.accessioned2024-08-19T00:05:20Z-
dc.date.available2024-08-19T00:05:20Z-
dc.date.issued2024-06-
dc.identifier.issn2156-6976-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/200210-
dc.description.abstractThis study developed a molecular classification model for cervical cancer using machine learning, integrating prognosis related biomarkers with clinical features. Analyzing 281 specimens, 27 biomarkers were identified, associated with recurrence and treatment response. The model identified four molecular subgroups: group 1 (OALO) with Overexpression of ATP5H and LOw risk; group 2 (LASIM) with low expression of ATP5H and SCP, indicating InterMediate risk; group 3 (LASNIM) characterized by Low expression of ATP5H, SCP, and NANOG, also at InterMediate risk; and group 4 (LASONH), with Low expression of ATP5H, and SCP, Over expression of NANOG, indicating High risk, and potentially aggressive disease. This classification correlated with clinical outcomes such as tumor stage, lymph node metastasis, and response to treatment, demonstrating that combining molecular and clinical factors could significantly enhance the prediction of recurrence and aid in personalized treatment strategies for cervical cancer.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publishere-Century Publishing Corporation-
dc.relation.isPartOfAMERICAN JOURNAL OF CANCER RESEARCH-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleDeveloping a comprehensive molecular subgrouping model for cervical cancer using machine learning-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Obstetrics and Gynecology (산부인과학교실)-
dc.contributor.googleauthorGwan Hee Han-
dc.contributor.googleauthorHae-Rim Kim-
dc.contributor.googleauthorHee Yun-
dc.contributor.googleauthorJoon-Yong Chung-
dc.contributor.googleauthorJae-Hoon Kim-
dc.contributor.googleauthorHanbyoul Cho-
dc.identifier.doi10.62347/mter1763-
dc.contributor.localIdA00876-
dc.contributor.localIdA03921-
dc.relation.journalcodeJ00070-
dc.identifier.eissn2156-6976-
dc.identifier.pmid39005664-
dc.subject.keywordArtificial intelligence-
dc.subject.keywordcervical cancer-
dc.subject.keywordmachine learning-
dc.subject.keywordprognosis-
dc.contributor.alternativeNameKim, Jae Hoon-
dc.contributor.affiliatedAuthor김재훈-
dc.contributor.affiliatedAuthor조한별-
dc.citation.volume14-
dc.citation.number6-
dc.citation.startPage3186-
dc.citation.endPage3197-
dc.identifier.bibliographicCitationAMERICAN JOURNAL OF CANCER RESEARCH, Vol.14(6) : 3186-3197, 2024-06-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Obstetrics and Gynecology (산부인과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.