Cited 0 times in

Identification of B cell subsets based on antigen receptor sequences using deep learning

DC Field Value Language
dc.contributor.author김승우-
dc.contributor.author신하영-
dc.date.accessioned2024-05-23T02:58:27Z-
dc.date.available2024-05-23T02:58:27Z-
dc.date.issued2024-03-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/199120-
dc.description.abstractB cell receptors (BCRs) denote antigen specificity, while corresponding cell subsets indicate B cell functionality. Since each B cell uniquely encodes this combination, physical isolation and subsequent processing of individual B cells become indispensable to identify both attributes. However, this approach accompanies high costs and inevitable information loss, hindering high-throughput investigation of B cell populations. Here, we present BCR-SORT, a deep learning model that predicts cell subsets from their corresponding BCR sequences by leveraging B cell activation and maturation signatures encoded within BCR sequences. Subsequently, BCR-SORT is demonstrated to improve reconstruction of BCR phylogenetic trees, and reproduce results consistent with those verified using physical isolation-based methods or prior knowledge. Notably, when applied to BCR sequences from COVID-19 vaccine recipients, it revealed inter-individual heterogeneity of evolutionary trajectories towards Omicron-binding memory B cells. Overall, BCR-SORT offers great potential to improve our understanding of B cell responses.-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherFrontiers Research Foundation-
dc.relation.isPartOfFRONTIERS IN IMMUNOLOGY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHB-Lymphocyte Subsets*-
dc.subject.MESHCOVID-19 Vaccines-
dc.subject.MESHDeep Learning*-
dc.subject.MESHHumans-
dc.subject.MESHPhylogeny-
dc.subject.MESHReceptors, Antigen, B-Cell / genetics-
dc.titleIdentification of B cell subsets based on antigen receptor sequences using deep learning-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Neurology (신경과학교실)-
dc.contributor.googleauthorHyunho Lee-
dc.contributor.googleauthorKyoungseob Shin-
dc.contributor.googleauthorYongju Lee-
dc.contributor.googleauthorSoobin Lee-
dc.contributor.googleauthorSeungyoun Lee-
dc.contributor.googleauthorEunjae Lee-
dc.contributor.googleauthorSeung Woo Kim-
dc.contributor.googleauthorHa Young Shin-
dc.contributor.googleauthorJong Hoon Kim-
dc.contributor.googleauthorJunho Chung-
dc.contributor.googleauthorSunghoon Kwon-
dc.identifier.doi10.3389/fimmu.2024.1342285-
dc.contributor.localIdA04901-
dc.contributor.localIdA02170-
dc.relation.journalcodeJ03075-
dc.identifier.eissn1664-3224-
dc.identifier.pmid38576618-
dc.subject.keywordB cell phylogenetic inference-
dc.subject.keywordB cell receptor-
dc.subject.keywordB cell subset-
dc.subject.keywordantibody repertoire-
dc.subject.keyworddeep learning-
dc.subject.keywordintegrated gradients-
dc.subject.keywordnext-generation sequencing-
dc.subject.keywordsomatic hypermutation-
dc.contributor.alternativeNameKim, Seung Woo-
dc.contributor.affiliatedAuthor김승우-
dc.contributor.affiliatedAuthor신하영-
dc.citation.volume15-
dc.citation.startPage1342285-
dc.identifier.bibliographicCitationFRONTIERS IN IMMUNOLOGY, Vol.15 : 1342285, 2024-03-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.