0 308

Cited 1 times in

Nanoscale Magneto-mechanical-genetics of Deep Brain Neurons Reversing Motor Deficits in Parkinsonian Mice

DC Field Value Language
dc.contributor.author이필휴-
dc.date.accessioned2024-02-15T07:00:17Z-
dc.date.available2024-02-15T07:00:17Z-
dc.date.issued2023-12-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/198114-
dc.description.abstractHere, we introduce the magneto-mechanical-genetic (MMG)-driven wireless deep brain stimulation (DBS) using magnetic nanostructures for therapeutic benefits in the mouse model of Parkinson’s disease (PD). Electrical DBS of the subthalamic nucleus (STN) is an effective therapy for mitigating Parkinson’s motor symptoms. However, its broader application is hampered by the requirement for implanted electrodes and the lack of anatomical and cellular specificity. Using the nanoscale magnetic force actuators (m-Torquer), which deliver torque force under rotating magnetic fields to activate pre-encoded Piezo1 ion channels on target neurons, our system enables wireless and STN-specific DBS without implants, addressing key unmet challenges in the DBS field. In both late- and early-stage PD mice, MMG-DBS significantly improved locomotor activity and motor balance by 2-fold compared to untreated PD mice. Moreover, MMG-DBS enabled sustained therapeutic effects. This approach provides a non-invasive and implant-free DBS with cellular targeting capability for the effective treatment of Parkinsonian symptoms. © 2023 American Chemical Society.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfNANO LETTERS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAnimals-
dc.subject.MESHDeep Brain Stimulation*-
dc.subject.MESHIon Channels-
dc.subject.MESHMice-
dc.subject.MESHNeurons / physiology-
dc.subject.MESHParkinson Disease* / genetics-
dc.subject.MESHParkinson Disease* / therapy-
dc.subject.MESHParkinsonian Disorders* / therapy-
dc.subject.MESHSubthalamic Nucleus* / physiology-
dc.titleNanoscale Magneto-mechanical-genetics of Deep Brain Neurons Reversing Motor Deficits in Parkinsonian Mice-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Neurology (신경과학교실)-
dc.contributor.googleauthorWookjin Shin-
dc.contributor.googleauthorYeongdo Lee-
dc.contributor.googleauthorJueun Lim-
dc.contributor.googleauthorYoubin Lee-
dc.contributor.googleauthorJungsu David Lah-
dc.contributor.googleauthorSomin Lee-
dc.contributor.googleauthorJung-Uk-
dc.contributor.googleauthorLee Ri Yu-
dc.contributor.googleauthorPhil Hyu Lee-
dc.contributor.googleauthorJae-Hyun Lee-
dc.contributor.googleauthorMinsuk Kwak-
dc.contributor.googleauthorJinwoo Cheon-
dc.identifier.doi10.1021/acs.nanolett.3c03899-
dc.contributor.localIdA03270-
dc.relation.journalcodeJ02283-
dc.identifier.eissn1530-6992-
dc.identifier.pmid38157214-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.nanolett.3c03899-
dc.subject.keywordParkinson’s disease-
dc.subject.keywordPiezo1 ion channel-
dc.subject.keyworddeep brain stimulation-
dc.subject.keywordmagnetic nanoparticles-
dc.subject.keywordmagnetogenetics-
dc.subject.keywordsubthalamic nucleus (STN)-
dc.contributor.alternativeNameLee, Phil Hyu-
dc.contributor.affiliatedAuthor이필휴-
dc.citation.volume24-
dc.citation.number1-
dc.citation.startPage270-
dc.citation.endPage278-
dc.identifier.bibliographicCitationNANO LETTERS, Vol.24(1) : 270-278, 2023-12-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurology (신경과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.