177 266

Cited 0 times in

Cited 113 times in

AI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy

DC Field Value Language
dc.contributor.author장혁재-
dc.date.accessioned2023-05-31T05:22:37Z-
dc.date.available2023-05-31T05:22:37Z-
dc.date.issued2023-02-
dc.identifier.issn1936-878X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/194177-
dc.description.abstractBackground: Clinical reads of coronary computed tomography angiography (CTA), especially by less experienced readers, may result in overestimation of coronary artery disease stenosis severity compared with expert interpretation. Artificial intelligence (AI)-based solutions applied to coronary CTA may overcome these limitations. Objectives: This study compared the performance for detection and grading of coronary stenoses using artificial intelligence–enabled quantitative coronary computed tomography (AI-QCT) angiography analyses to core lab–interpreted coronary CTA, core lab quantitative coronary angiography (QCA), and invasive fractional flow reserve (FFR). Methods: Coronary CTA, FFR, and QCA data from 303 stable patients (64 ± 10 years of age, 71% male) from the CREDENCE (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia) trial were retrospectively analyzed using an Food and Drug Administration–cleared cloud-based software that performs AI-enabled coronary segmentation, lumen and vessel wall determination, plaque quantification and characterization, and stenosis determination. Results: Disease prevalence was high, with 32.0%, 35.0%, 21.0%, and 13.0% demonstrating ≥50% stenosis in 0, 1, 2, and 3 coronary vessel territories, respectively. Average AI-QCT analysis time was 10.3 ± 2.7 minutes. AI-QCT evaluation demonstrated per-patient sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of 94%, 68%, 81%, 90%, and 84%, respectively, for ≥50% stenosis, and of 94%, 82%, 69%, 97%, and 86%, respectively, for detection of ≥70% stenosis. There was high correlation between stenosis detected on AI-QCT evaluation vs QCA on a per-vessel and per-patient basis (intraclass correlation coefficient = 0.73 and 0.73, respectively; P < 0.001 for both). False positive AI-QCT findings were noted in in 62 of 848 (7.3%) vessels (stenosis of ≥70% by AI-QCT and QCA of <70%); however, 41 (66.1%) of these had an FFR of <0.8. Conclusions: A novel AI-based evaluation of coronary CTA enables rapid and accurate identification and exclusion of high-grade stenosis and with close agreement to blinded, core lab–interpreted quantitative coronary angiography. (Computed TomogRaphic Evaluation of Atherosclerotic DEtermiNants of Myocardial IsChEmia [CREDENCE]; NCT02173275) © 2023 The Authors-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfJACC-CARDIOVASCULAR IMAGING-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHArtificial Intelligence-
dc.subject.MESHAtherosclerosis*-
dc.subject.MESHComputed Tomography Angiography / methods-
dc.subject.MESHConstriction, Pathologic-
dc.subject.MESHCoronary Angiography / methods-
dc.subject.MESHCoronary Artery Disease* / diagnostic imaging-
dc.subject.MESHCoronary Stenosis* / diagnostic imaging-
dc.subject.MESHFemale-
dc.subject.MESHFractional Flow Reserve, Myocardial*-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMyocardial Ischemia*-
dc.subject.MESHPredictive Value of Tests-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHSeverity of Illness Index-
dc.titleAI Evaluation of Stenosis on Coronary CTA, Comparison With Quantitative Coronary Angiography and Fractional Flow Reserve: A CREDENCE Trial Substudy-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorWilliam F Griffin-
dc.contributor.googleauthorAndrew D Choi-
dc.contributor.googleauthorJoanna S Riess-
dc.contributor.googleauthorHugo Marques-
dc.contributor.googleauthorHyuk-Jae Chang-
dc.contributor.googleauthorJung Hyun Choi-
dc.contributor.googleauthorJoon-Hyung Doh-
dc.contributor.googleauthorAe-Young Her-
dc.contributor.googleauthorBon-Kwon Koo-
dc.contributor.googleauthorChang-Wook Nam-
dc.contributor.googleauthorHyung-Bok Park-
dc.contributor.googleauthorSang-Hoon Shin-
dc.contributor.googleauthorJason Cole-
dc.contributor.googleauthorAlessia Gimelli-
dc.contributor.googleauthorMuhammad Akram Khan-
dc.contributor.googleauthorBin Lu-
dc.contributor.googleauthorYang Gao-
dc.contributor.googleauthorFaisal Nabi-
dc.contributor.googleauthorRyo Nakazato-
dc.contributor.googleauthorU Joseph Schoepf-
dc.contributor.googleauthorRoel S Driessen-
dc.contributor.googleauthorMichiel J Bom-
dc.contributor.googleauthorRandall Thompson-
dc.contributor.googleauthorJames J Jang-
dc.contributor.googleauthorMichael Ridner-
dc.contributor.googleauthorChris Rowan-
dc.contributor.googleauthorErick Avelar-
dc.contributor.googleauthorPhilippe Généreux-
dc.contributor.googleauthorPaul Knaapen-
dc.contributor.googleauthorGuus A de Waard-
dc.contributor.googleauthorGianluca Pontone-
dc.contributor.googleauthorDaniele Andreini-
dc.contributor.googleauthorJames P Earls-
dc.identifier.doi10.1016/j.jcmg.2021.10.020-
dc.contributor.localIdA03490-
dc.relation.journalcodeJ01192-
dc.identifier.eissn1876-7591-
dc.identifier.pmid35183478-
dc.subject.keywordartificial intelligence-
dc.subject.keywordatherosclerosis-
dc.subject.keywordcoronary CTA-
dc.subject.keywordcoronary artery disease-
dc.subject.keywordcoronary computed tomography-
dc.subject.keywordfractional flow reserve-
dc.subject.keywordquantitative coronary angiography-
dc.contributor.alternativeNameChang, Hyuck Jae-
dc.contributor.affiliatedAuthor장혁재-
dc.citation.volume16-
dc.citation.number2-
dc.citation.startPage193-
dc.citation.endPage205-
dc.identifier.bibliographicCitationJACC-CARDIOVASCULAR IMAGING, Vol.16(2) : 193-205, 2023-02-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.