Cited 72 times in

Development and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study

DC Field Value Language
dc.contributor.author김현기-
dc.contributor.author정재호-
dc.date.accessioned2022-11-24T00:30:30Z-
dc.date.available2022-11-24T00:30:30Z-
dc.date.issued2021-10-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/190726-
dc.description.abstractBackground: Response to immunotherapy in gastric cancer is associated with microsatellite instability (or mismatch repair deficiency) and Epstein-Barr virus (EBV) positivity. We therefore aimed to develop and validate deep learning-based classifiers to detect microsatellite instability and EBV status from routine histology slides. Methods: In this retrospective, multicentre study, we collected tissue samples from ten cohorts of patients with gastric cancer from seven countries (South Korea, Switzerland, Japan, Italy, Germany, the UK and the USA). We trained a deep learning-based classifier to detect microsatellite instability and EBV positivity from digitised, haematoxylin and eosin stained resection slides without annotating tumour containing regions. The performance of the classifier was assessed by within-cohort cross-validation in all ten cohorts and by external validation, for which we split the cohorts into a five-cohort training dataset and a five-cohort test dataset. We measured the area under the receiver operating curve (AUROC) for detection of microsatellite instability and EBV status. Microsatellite instability and EBV status were determined to be detectable if the lower bound of the 95% CI for the AUROC was above 0·5. Findings: Across the ten cohorts, our analysis included 2823 patients with known microsatellite instability status and 2685 patients with known EBV status. In the within-cohort cross-validation, the deep learning-based classifier could detect microsatellite instability status in nine of ten cohorts, with AUROCs ranging from 0·597 (95% CI 0·522-0·737) to 0·836 (0·795-0·880) and EBV status in five of eight cohorts, with AUROCs ranging from 0·819 (0·752-0·841) to 0·897 (0·513-0·966). Training a classifier on the pooled training dataset and testing it on the five remaining cohorts resulted in high classification performance with AUROCs ranging from 0·723 (95% CI 0·676-0·794) to 0·863 (0·747-0·969) for detection of microsatellite instability and from 0·672 (0·403-0·989) to 0·859 (0·823-0·919) for detection of EBV status. Interpretation: Classifiers became increasingly robust when trained on pooled cohorts. After prospective validation, this deep learning-based tissue classification system could be used as an inexpensive predictive biomarker for immunotherapy in gastric cancer. Funding: German Cancer Aid and German Federal Ministry of Health.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherElsevier-
dc.relation.isPartOfLANCET DIGITAL HEALTH-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHCohort Studies-
dc.subject.MESHDeep Learning*-
dc.subject.MESHEpstein-Barr Virus Infections / complications*-
dc.subject.MESHEpstein-Barr Virus Infections / diagnosis*-
dc.subject.MESHFemale-
dc.subject.MESHGermany-
dc.subject.MESHHistological Techniques / methods-
dc.subject.MESHHumans-
dc.subject.MESHItaly-
dc.subject.MESHJapan-
dc.subject.MESHMale-
dc.subject.MESHMicrosatellite Instability*-
dc.subject.MESHMiddle Aged-
dc.subject.MESHReproducibility of Results-
dc.subject.MESHRepublic of Korea-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHStomach Neoplasms / complications*-
dc.subject.MESHStomach Neoplasms / genetics*-
dc.subject.MESHSwitzerland-
dc.subject.MESHUnited Kingdom-
dc.subject.MESHUnited States-
dc.titleDevelopment and validation of deep learning classifiers to detect Epstein-Barr virus and microsatellite instability status in gastric cancer: a retrospective multicentre cohort study-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Pathology (병리학교실)-
dc.contributor.googleauthorHannah Sophie Muti-
dc.contributor.googleauthorLara Rosaline Heij-
dc.contributor.googleauthorGisela Keller-
dc.contributor.googleauthorMeike Kohlruss-
dc.contributor.googleauthorRupert Langer-
dc.contributor.googleauthorBastian Dislich-
dc.contributor.googleauthorJae-Ho Cheong-
dc.contributor.googleauthorYoung-Woo Kim-
dc.contributor.googleauthorHyunki Kim-
dc.contributor.googleauthorMyeong-Cherl Kook-
dc.contributor.googleauthorDavid Cunningham-
dc.contributor.googleauthorWilliam H Allum-
dc.contributor.googleauthorRuth E Langley-
dc.contributor.googleauthorMatthew G Nankivell-
dc.contributor.googleauthorPhilip Quirke-
dc.contributor.googleauthorJeremy D Hayden-
dc.contributor.googleauthorNicholas P West-
dc.contributor.googleauthorAndrew J Irvine-
dc.contributor.googleauthorTakaki Yoshikawa-
dc.contributor.googleauthorTakashi Oshima-
dc.contributor.googleauthorRalf Huss-
dc.contributor.googleauthorBianca Grosser-
dc.contributor.googleauthorFranco Roviello-
dc.contributor.googleauthorAlessia d'Ignazio-
dc.contributor.googleauthorAlexander Quaas-
dc.contributor.googleauthorHakan Alakus-
dc.contributor.googleauthorXiuxiang Tan-
dc.contributor.googleauthorAlexander T Pearson-
dc.contributor.googleauthorTom Luedde-
dc.contributor.googleauthorMatthias P Ebert-
dc.contributor.googleauthorDirk Jäger-
dc.contributor.googleauthorChristian Trautwein-
dc.contributor.googleauthorNadine Therese Gaisa-
dc.contributor.googleauthorHeike I Grabsch-
dc.contributor.googleauthorJakob Nikolas Kather-
dc.identifier.doi10.1016/S2589-7500(21)00133-3-
dc.contributor.localIdA01108-
dc.contributor.localIdA03717-
dc.relation.journalcodeJ03790-
dc.identifier.eissn2589-7500-
dc.identifier.pmid34417147-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S2589750021001333-
dc.contributor.alternativeNameKim, Hyunki-
dc.contributor.affiliatedAuthor김현기-
dc.contributor.affiliatedAuthor정재호-
dc.citation.volume3-
dc.citation.number10-
dc.citation.startPageE654-
dc.citation.endPageE664-
dc.identifier.bibliographicCitationLANCET DIGITAL HEALTH, Vol.3(10) : E654-E664, 2021-10-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Pathology (병리학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Surgery (외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.