19 48

Cited 0 times in

An Ultrasonically Powered Implantable Microprobe for Electrolytic Ablation

DC Field Value Language
dc.contributor.author박준성-
dc.date.accessioned2022-09-06T06:42:07Z-
dc.date.available2022-09-06T06:42:07Z-
dc.date.issued2020-01-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/190273-
dc.description.abstractElectrolytic ablation (EA) is a promising nonthermal tumor ablation technique that destroys malignant cells through induction of a locoregional pH change. EA is typically performed by inserting needle electrodes inside the tumor followed by application of direct current (DC), thus inducing electrolysis and creating localized pH changes around the electrodes. In this paper, we report an ultrasonically powered implantable EA microprobe that may increase the clinical relevance of EA by allowing wireless control over device operation (capability to remotely turn the device on and off) and providing flexibility in treatment options (easier to administer fractionated doses over a longer period). The wireless EA microprobe consists of a millimeter-sized piezoelectric ultrasonic receiver, a rectifier circuit, and a pair of platinum electrodes (overall size is 9x3x2mm(3)). Once implanted through a minimally invasive procedure, the microprobe can stay within a solid tumor and be repeatedly used as needed. Ultrasonic power allows for efficient power delivery to mm-scale devices implanted deep within soft tissues of the body. The microprobe is capable of producing a direct current of 90 mu A at a voltage of 5V across the electrodes under low-intensity ultrasound (similar to 200mW/cm(2)). The DC power creates acidic (pH<2) and alkaline (pH>12.9) regions around the anode and the cathode, respectively. The pH change, measured using tissue-mimicking agarose gel, extends to 0.8cm(3) in volume within an hour at an expansion rate of 0.5mm(3)/min. The microprobe-mediated EA ablative capability is demonstrated in vitro in cancer cells and ex vivo in mouse liver.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleAn Ultrasonically Powered Implantable Microprobe for Electrolytic Ablation-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Surgery (외과학교실)-
dc.contributor.googleauthorA Kim-
dc.contributor.googleauthorS K Lee-
dc.contributor.googleauthorT Parupudi 3 4-
dc.contributor.googleauthorR Rahimi-
dc.contributor.googleauthorS H Song-
dc.contributor.googleauthorM C Park-
dc.contributor.googleauthorS Islam-
dc.contributor.googleauthorJ Zhou-
dc.contributor.googleauthorA K Majumdar-
dc.contributor.googleauthorJ S Park-
dc.contributor.googleauthorJ M Yoo-
dc.contributor.googleauthorB Ziaie-
dc.identifier.doi10.1038/s41598-020-58090-8-
dc.contributor.localIdA01672-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid32001732-
dc.contributor.alternativeNamePark, Joon Seong-
dc.contributor.affiliatedAuthor박준성-
dc.citation.volume10-
dc.citation.number1-
dc.citation.startPage1510-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.10(1) : 1510, 2020-01-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Surgery (외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.