0 370

Cited 10 times in

Stress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics

DC Field Value Language
dc.contributor.author권재성-
dc.date.accessioned2022-05-09T17:15:16Z-
dc.date.available2022-05-09T17:15:16Z-
dc.date.issued2022-03-
dc.identifier.issn*-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/188467-
dc.description.abstractThe kinetic body motions have guided the core-shell fabrics of wearable bioelectronics to be elastoplastic. However, the polymeric electrodes follow the trade-off relationship between toughness and stretchability. To this end, the stress dissipation encoded silk fibroin electrode is proposed as the core electrode of wearable bioelectronics. Significantly, the high degree of intrinsic stress dissipation is realized via an amino acid crosslink. The canonical phenolic amino acid (i.e., tyrosine) of silk fibroin is engineered to bridge the secondary structures. A sufficient crosslink network is constructed when tyrosine is exposed near the amorphous strand. The stress dissipative tyrosine crosslink affords 12.5-fold increments of toughness (4.72 to 58.9 MJ m-3 ) and implements the elastoplastic silk fibroin. The harmony of elastoplastic core electrodes with shell fabrics enables the wearable bioelectronics to employ mechanical performance (elastoplasticity of 750 MJ m-3 ) and stable electrical response. The proposed wearable is capable of assisting the effective workouts via triboelectricity. In principle, active mobility with suggested wearables potentially relieves muscular fatigues and severe injuries during daily fitness.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherWILEY-VCH-
dc.relation.isPartOfADVANCED SCIENCE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAthletes-
dc.subject.MESHElectrodes-
dc.subject.MESHFibroins* / chemistry-
dc.subject.MESHHumans-
dc.subject.MESHPolymers-
dc.subject.MESHSilk-
dc.titleStress Dissipation Encoded Silk Fibroin Electrode for the Athlete-Beneficial Silk Bioelectronics-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실)-
dc.contributor.googleauthorWoojin Choi-
dc.contributor.googleauthorDeokjae Heo-
dc.contributor.googleauthorTaeho Kim-
dc.contributor.googleauthorSungwon Jung-
dc.contributor.googleauthorMoonhyun Choi-
dc.contributor.googleauthorJiwoong Heo-
dc.contributor.googleauthorJae-Sung Kwon-
dc.contributor.googleauthorByeong-Su Kim-
dc.contributor.googleauthorWonhwa Lee-
dc.contributor.googleauthorWon-Gun Koh-
dc.contributor.googleauthorJeong Ho Cho-
dc.contributor.googleauthorSangmin Lee-
dc.contributor.googleauthorJinkee Hong-
dc.identifier.doi10.1002/advs.202105420-
dc.contributor.localIdA00247-
dc.relation.journalcodeJ04017-
dc.identifier.eissn2198-3844-
dc.identifier.pmid35001517-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/10.1002/advs.202105420-
dc.subject.keywordamino acid engineering-
dc.subject.keywordenergy harvesting technology-
dc.subject.keywordintrinsic crosslink-
dc.subject.keywordmechanical property-
dc.subject.keywordsilk fibroin-
dc.subject.keywordwearable bioelectronics-
dc.contributor.alternativeNameKwon, Jae-Sung-
dc.contributor.affiliatedAuthor권재성-
dc.citation.volume9-
dc.citation.number8-
dc.citation.startPagee2105420-
dc.identifier.bibliographicCitationADVANCED SCIENCE, Vol.9(8) : e2105420, 2022-03-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.