79 110

Cited 0 times in

Pre-procedural determination of device size in left atrial appendage occlusion using three-dimensional cardiac computed tomography

DC Field Value Language
dc.contributor.author김중선-
dc.contributor.author박희남-
dc.contributor.author서지원-
dc.contributor.author심지영-
dc.contributor.author이오현-
dc.contributor.author정보영-
dc.contributor.author조익성-
dc.contributor.author홍그루-
dc.date.accessioned2022-02-23T01:08:53Z-
dc.date.available2022-02-23T01:08:53Z-
dc.date.issued2021-12-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/187560-
dc.description.abstractThe complex structure of the left atrial appendage (LAA) brings limitations to the two-dimensional-based LAA occlusion (LAAO) size prediction system using transesophageal echocardiography. The LAA anatomy can be evaluated more precisely using three-dimensional images from cardiac computed tomography (CT); however, there is lack of data regarding which parameter to choose from CT-based images during pre-procedural planning of LAAO. We aimed to assess the accuracy of measurements derived from cardiac CT images for selecting LAAO devices. We retrospectively reviewed 62 patients with Amplatzer Cardiac Plug and Amulet LAAO devices who underwent implantation from 2017 to 2020. The minimal, maximal, average, area-derived, and perimeter-derived diameters of the LAA landing zone were measured using CT-based images. Predicted device sizes using sizing charts were compared with actual successfully implanted device sizes. The mean size of implanted devices was 27.1 ± 3.7 mm. The perimeter-derived diameter predicted device size most accurately (mean error = - 0.8 ± 2.4 mm). All other parameters showed significantly larger error (mean error; minimal diameter = - 4.9 ± 3.3 mm, maximal diameter = 1.0 ± 2.9 mm, average diameter = - 1.6 ± 2.6 mm, area-derived diameter = - 2.0 ± 2.6 mm) than the perimeter-derived diameter (all p for difference < 0.05). The error for other parameters were larger in cases with more eccentrically-shaped landing zones, while the perimeter-derived diameter had minor error regardless of eccentricity. When oversizing was used, all parameters showed significant disagreement. The perimeter-derived diameter on cardiac CT images provided the most accurate estimation of LAAO device size regardless of landing zone eccentricity. Oversizing was unnecessary when using cardiac CT to predict an accurate LAAO size.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherNature Publishing Group-
dc.relation.isPartOfSCIENTIFIC REPORTS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHAged-
dc.subject.MESHAtrial Appendage / anatomy & histology-
dc.subject.MESHAtrial Appendage / diagnostic imaging*-
dc.subject.MESHAtrial Fibrillation / complications-
dc.subject.MESHAtrial Fibrillation / therapy-
dc.subject.MESHFemale-
dc.subject.MESHHumans-
dc.subject.MESHImaging, Three-Dimensional / methods*-
dc.subject.MESHIschemic Stroke / etiology-
dc.subject.MESHIschemic Stroke / prevention & control-
dc.subject.MESHMale-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPreoperative Period-
dc.subject.MESHProsthesis Fitting*-
dc.subject.MESHRetrospective Studies-
dc.subject.MESHSeptal Occluder Device*-
dc.subject.MESHTomography, X-Ray Computed / methods*-
dc.titlePre-procedural determination of device size in left atrial appendage occlusion using three-dimensional cardiac computed tomography-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorIksung Cho-
dc.contributor.googleauthorWilliam D Kim-
dc.contributor.googleauthorOh Hyun Lee-
dc.contributor.googleauthorMin Jae Cha-
dc.contributor.googleauthorJiwon Seo-
dc.contributor.googleauthorChi Young Shim-
dc.contributor.googleauthorHui-Nam Pak-
dc.contributor.googleauthorBoyoung Joung-
dc.contributor.googleauthorGeu-Ru Hong-
dc.contributor.googleauthorHeidi Gransar-
dc.contributor.googleauthorSeung Yong Shin-
dc.contributor.googleauthorJung-Sun Kim-
dc.identifier.doi10.1038/s41598-021-03537-9-
dc.contributor.localIdA00961-
dc.contributor.localIdA01776-
dc.contributor.localIdA01913-
dc.contributor.localIdA02213-
dc.contributor.localIdA05164-
dc.contributor.localIdA03609-
dc.contributor.localIdA03888-
dc.contributor.localIdA04386-
dc.relation.journalcodeJ02646-
dc.identifier.eissn2045-2322-
dc.identifier.pmid34916575-
dc.contributor.alternativeNameKim, Jung Sun-
dc.contributor.affiliatedAuthor김중선-
dc.contributor.affiliatedAuthor박희남-
dc.contributor.affiliatedAuthor서지원-
dc.contributor.affiliatedAuthor심지영-
dc.contributor.affiliatedAuthor이오현-
dc.contributor.affiliatedAuthor정보영-
dc.contributor.affiliatedAuthor조익성-
dc.contributor.affiliatedAuthor홍그루-
dc.citation.volume11-
dc.citation.number1-
dc.citation.startPage24107-
dc.identifier.bibliographicCitationSCIENTIFIC REPORTS, Vol.11(1) : 24107, 2021-12-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.