Cited 46 times in
A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 이지현 | - |
dc.contributor.author | 장혁재 | - |
dc.contributor.author | 한동희 | - |
dc.date.accessioned | 2021-01-19T08:00:01Z | - |
dc.date.available | 2021-01-19T08:00:01Z | - |
dc.date.issued | 2020-10 | - |
dc.identifier.issn | 1936-878X | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/181415 | - |
dc.description.abstract | Objectives: This study sought to identify culprit lesion (CL) precursors among acute coronary syndrome (ACS) patients based on qualitative and quantitative computed tomography-based plaque characteristics. Background: Coronary computed tomography angiography (CTA) has been validated for patient-level prediction of ACS. However, the applicability of coronary CTA to CL assessment is not known. Methods: Utilizing the ICONIC (Incident COroNary Syndromes Identified by Computed Tomography) study, a nested case-control study of 468 patients with baseline coronary CTA, the study included ACS patients with invasive coronary angiography-adjudicated CLs that could be aligned to CL precursors on baseline coronary CTA. Separate blinded core laboratories adjudicated CLs and performed atherosclerotic plaque evaluation. Thereafter, the study used a boosted ensemble algorithm (XGBoost) to develop a predictive model of CLs. Data were randomly split into a training set (80%) and a test set (20%). The area under the receiver-operating characteristic curve of this model was compared with that of diameter stenosis (model 1), high-risk plaque features (model 2), and lesion-level features of CL precursors from the ICONIC study (model 3). Thereafter, the machine learning (ML) model was applied to 234 non-ACS patients with 864 lesions to determine model performance for CL exclusion. Results: CL precursors were identified by both coronary angiography and baseline coronary CTA in 124 of 234 (53.0%) patients, with a total of 582 lesions (containing 124 CLs) included in the analysis. The ML model demonstrated significantly higher area under the receiver-operating characteristic curve for discriminating CL precursors (0.774; 95% confidence interval [CI]: 0.758 to 0.790) compared with model 1 (0.599; 95% CI: 0.599 to 0.599; p < 0.01), model 2 (0.532; 95% CI: 0.501 to 0.563; p < 0.01), and model 3 (0.672; 95% CI: 0.662 to 0.682; p < 0.01). When applied to the non-ACS cohort, the ML model had a specificity of 89.3% for excluding CLs. Conclusions: In a high-risk cohort, a boosted ensemble algorithm can be used to predict CL from non-CL precursors on coronary CTA. | - |
dc.description.statementOfResponsibility | restriction | - |
dc.language | English | - |
dc.publisher | Elsevier | - |
dc.relation.isPartOf | JACC-CARDIOVASCULAR IMAGING | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.title | A Boosted Ensemble Algorithm for Determination of Plaque Stability in High-Risk Patients on Coronary CTA | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Internal Medicine (내과학교실) | - |
dc.contributor.googleauthor | Subhi J Al'Aref | - |
dc.contributor.googleauthor | Gurpreet Singh | - |
dc.contributor.googleauthor | Jeong W Choi | - |
dc.contributor.googleauthor | Zhuoran Xu | - |
dc.contributor.googleauthor | Gabriel Maliakal | - |
dc.contributor.googleauthor | Alexander R van Rosendael | - |
dc.contributor.googleauthor | Benjamin C Lee | - |
dc.contributor.googleauthor | Zahra Fatima | - |
dc.contributor.googleauthor | Daniele Andreini | - |
dc.contributor.googleauthor | Jeroen J Bax | - |
dc.contributor.googleauthor | Filippo Cademartiri | - |
dc.contributor.googleauthor | Kavitha Chinnaiyan | - |
dc.contributor.googleauthor | Benjamin J W Chow | - |
dc.contributor.googleauthor | Edoardo Conte | - |
dc.contributor.googleauthor | Ricardo C Cury | - |
dc.contributor.googleauthor | Gudruf Feuchtner | - |
dc.contributor.googleauthor | Martin Hadamitzky | - |
dc.contributor.googleauthor | Yong-Jin Kim | - |
dc.contributor.googleauthor | Sang-Eun Lee | - |
dc.contributor.googleauthor | Jonathon A Leipsic | - |
dc.contributor.googleauthor | Erica Maffei | - |
dc.contributor.googleauthor | Hugo Marques | - |
dc.contributor.googleauthor | Fabian Plank | - |
dc.contributor.googleauthor | Gianluca Pontone | - |
dc.contributor.googleauthor | Gilbert L Raff | - |
dc.contributor.googleauthor | Todd C Villines | - |
dc.contributor.googleauthor | Harald G Weirich | - |
dc.contributor.googleauthor | Iksung Cho | - |
dc.contributor.googleauthor | Ibrahim Danad | - |
dc.contributor.googleauthor | Donghee Han | - |
dc.contributor.googleauthor | Ran Heo | - |
dc.contributor.googleauthor | Ji Hyun Lee | - |
dc.contributor.googleauthor | Asim Rizvi | - |
dc.contributor.googleauthor | Wijnand J Stuijfzand | - |
dc.contributor.googleauthor | Heidi Gransar | - |
dc.contributor.googleauthor | Yao Lu | - |
dc.contributor.googleauthor | Ji Min Sung | - |
dc.contributor.googleauthor | Hyung-Bok Park | - |
dc.contributor.googleauthor | Daniel S Berman | - |
dc.contributor.googleauthor | Matthew J Budoff | - |
dc.contributor.googleauthor | Habib Samady | - |
dc.contributor.googleauthor | eter H Stone | - |
dc.contributor.googleauthor | Renu Virmani | - |
dc.contributor.googleauthor | Jagat Narula | - |
dc.contributor.googleauthor | Hyuk-Jae Chang | - |
dc.contributor.googleauthor | Fay Y Lin | - |
dc.contributor.googleauthor | Lohendran Baskaran | - |
dc.contributor.googleauthor | Leslee J Shaw | - |
dc.contributor.googleauthor | James K Min | - |
dc.identifier.doi | 10.1016/j.jcmg.2020.03.025 | - |
dc.contributor.localId | A03215 | - |
dc.contributor.localId | A03490 | - |
dc.contributor.localId | A04811 | - |
dc.relation.journalcode | J01192 | - |
dc.identifier.eissn | 1876-7591 | - |
dc.identifier.pmid | 32682719 | - |
dc.identifier.url | https://www.sciencedirect.com/science/article/pii/S1936878X2030423X | - |
dc.subject.keyword | acute coronary syndrome | - |
dc.subject.keyword | coronary computed tomography angiography | - |
dc.subject.keyword | diameter stenosis | - |
dc.subject.keyword | machine learning | - |
dc.contributor.alternativeName | Lee, Jee Hyun | - |
dc.contributor.affiliatedAuthor | 이지현 | - |
dc.contributor.affiliatedAuthor | 장혁재 | - |
dc.contributor.affiliatedAuthor | 한동희 | - |
dc.citation.volume | 13 | - |
dc.citation.number | 10 | - |
dc.citation.startPage | 2162 | - |
dc.citation.endPage | 2173 | - |
dc.identifier.bibliographicCitation | JACC-CARDIOVASCULAR IMAGING, Vol.13(10) : 2162-2173, 2020-10 | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.