19 47

Cited 0 times in

Association of Cardiovascular Disease Risk Factor Burden With Progression of Coronary Atherosclerosis Assessed by Serial Coronary Computed Tomographic Angiography

DC FieldValueLanguage
dc.description.abstractImportance: Several studies have reported that the progression of coronary atherosclerosis, as measured by serial coronary computed tomographic (CT) angiography, is associated with the risk of future cardiovascular events. However, the cumulative consequences of multiple risk factors for plaque progression and the development of adverse plaque characteristics have not been well characterized. Objectives: To examine the association of cardiovascular risk factor burden, as assessed by atherosclerotic cardiovascular disease (ASCVD) risk score, with the progression of coronary atherosclerosis and the development of adverse plaque characteristics. Design, setting, and participants: This cohort study is a subgroup analysis of participant data from the prospective observational Progression of Atherosclerotic Plaque Determined by Computed Tomographic Angiography Imaging (PARADIGM) study, which evaluated the association between serial coronary CT angiography findings and clinical presentation. The PARADIGM international multicenter registry, which includes 13 centers in 7 countries (Brazil, Canada, Germany, Italy, Portugal, South Korea, and the US), was used to identify 1005 adult patients without known coronary artery disease who underwent serial coronary CT angiography scans (median interscan interval, 3.3 years; interquartile range [IQR], 2.6-4.8 years) between December 24, 2003, and December 16, 2015. Based on the 10-year ASCVD risk score, the cardiovascular risk factor burden was classified as low (<7.5%), intermediate (7.5%-20.0%), or high (>20.0%). Data were analyzed from February 8, 2019, to April 17, 2020. Exposures: Association of baseline ASCVD risk burden with plaque progression. Main outcomes and measures: Noncalcified plaque, calcified plaque, and total plaque volumes (mm3) were measured. Noncalcified plaque was subclassified using predefined Hounsfield unit thresholds for fibrous, fibrofatty, and low-attenuation plaque. The percent atheroma volume (PAV) was defined as plaque volume divided by vessel volume. Adverse plaque characteristics were defined as the presence of positive remodeling, low-attenuation plaque, or spotty calcification. Results: In total, 1005 patients (mean [SD] age, 60 [8] years; 575 men [57.2%]) were included in the analysis. Of those, 463 patients (46.1%) had a low 10-year ASCVD risk score (low-risk group), 373 patients (37.1%) had an intermediate ASCVD risk score (intermediate-risk group), and 169 patients (16.8%) had a high ASCVD risk score (high-risk group). The annualized progression rate of PAV for total plaque, calcified plaque, and noncalcified plaque was associated with increasing ASCVD risk (r = 0.26 for total plaque, r = 0.23 for calcified plaque, and r = 0.11 for noncalcified plaque; P < .001). The annualized PAV progression of total plaque, calcified plaque, and noncalcified plaque was significantly greater in the high-risk group compared with the low-risk and intermediate-risk groups (for total plaque, 0.99% vs 0.45% and 0.58%, respectively; P < .001; for calcified plaque, 0.61% vs 0.23% and 0.36%; P < .001; and for noncalcified plaque, 0.38%vs 0.22% and 0.23%; P = .01). When further subclassified by noncalcified plaque type, the annualized PAV progression of fibrofatty and low-attenuation plaque was greater in the high-risk group (0.09% and 0.02%, respectively) compared with the low- to intermediate-risk group (n = 836; 0.02% [P = .02] and 0.001% [P = .008], respectively). The interval development of adverse plaque characteristics was greater in the high-risk group compared with the low-risk and intermediate-risk groups (for new positive remodeling, 73 patients [43.2%] vs 151 patients [32.6%] and 133 patients [35.7%], respectively; P = .02; for new low-attenuation plaque, 26 patients [15.4%] vs 44 patients [9.5%] and 35 patients [9.4%]; P = .02; and for new spotty calcification, 37 patients [21.9%] vs 52 patients [11.2%] and 54 patients [14.5%]; P = .002). The progression of noncalcified plaque subclasses and the interval development of adverse plaque characteristics did not significantly differ between the low-risk and intermediate-risk groups. Conclusions and relevance: Progression of coronary atherosclerosis occurred across all ASCVD risk groups and was associated with an increase in 10-year ASCVD risk. The progression of fibrofatty and low-attenuation plaques and the development of adverse plaque characteristics was greater in patients with a high risk of ASCVD.-
dc.publisherAmerican Medical Association-
dc.relation.isPartOfJAMA NETWORK OPEN-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.subject.MESHBrazil / epidemiology-
dc.subject.MESHCardiovascular Diseases / complications-
dc.subject.MESHCardiovascular Diseases / epidemiology-
dc.subject.MESHCardiovascular Diseases / physiopathology*-
dc.subject.MESHCohort Studies-
dc.subject.MESHComputed Tomography Angiography / methods-
dc.subject.MESHComputed Tomography Angiography / statistics & numerical data*-
dc.subject.MESHCoronary Artery Disease / classification*-
dc.subject.MESHCoronary Artery Disease / complications-
dc.subject.MESHCoronary Artery Disease / epidemiology-
dc.subject.MESHCoronary Vessels / diagnostic imaging-
dc.subject.MESHCoronary Vessels / physiopathology-
dc.subject.MESHDisease Progression-
dc.subject.MESHMiddle Aged-
dc.subject.MESHPortugal / epidemiology-
dc.subject.MESHProspective Studies-
dc.subject.MESHQuebec / epidemiology-
dc.subject.MESHRegistries / statistics & numerical data-
dc.subject.MESHRepublic of Korea / epidemiology-
dc.subject.MESHRisk Factors*-
dc.titleAssociation of Cardiovascular Disease Risk Factor Burden With Progression of Coronary Atherosclerosis Assessed by Serial Coronary Computed Tomographic Angiography-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Internal Medicine (내과학교실)-
dc.contributor.googleauthorDonghee Han-
dc.contributor.googleauthorDaniel S Berman-
dc.contributor.googleauthorRobert J H Miller-
dc.contributor.googleauthorDaniele Andreini-
dc.contributor.googleauthorMatthew J Budoff-
dc.contributor.googleauthorFilippo Cademartiri-
dc.contributor.googleauthorKavitha Chinnaiyan-
dc.contributor.googleauthorJung Hyun Choi-
dc.contributor.googleauthorEdoardo Conte-
dc.contributor.googleauthorHugo Marques-
dc.contributor.googleauthorPedro de Araújo Gonçalves-
dc.contributor.googleauthorIlan Gottlieb-
dc.contributor.googleauthorMartin Hadamitzky-
dc.contributor.googleauthorJonathon Leipsic-
dc.contributor.googleauthorErica Maffei-
dc.contributor.googleauthorGianluca Pontone-
dc.contributor.googleauthorSangshoon Shin-
dc.contributor.googleauthorYong-Jin Kim-
dc.contributor.googleauthorByoung Kwon Lee-
dc.contributor.googleauthorEun Ju Chun-
dc.contributor.googleauthorJi Min Sung-
dc.contributor.googleauthorSang-Eun Lee-
dc.contributor.googleauthorRenu Virmani-
dc.contributor.googleauthorHabib Samady-
dc.contributor.googleauthorPeter Stone-
dc.contributor.googleauthorJagat Narula-
dc.contributor.googleauthorJeroen J Bax-
dc.contributor.googleauthorLeslee J Shaw-
dc.contributor.googleauthorFay Y Lin-
dc.contributor.googleauthorJames K Min-
dc.contributor.googleauthorHyuk-Jae Chang-
dc.contributor.alternativeNameLee, Byoung Kwon-
dc.identifier.bibliographicCitationJAMA NETWORK OPEN, Vol.3(7) : e2011444, 2020-07-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.