277 345

Cited 2 times in

Biomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis

DC Field Value Language
dc.contributor.author박지만-
dc.date.accessioned2020-12-01T17:29:52Z-
dc.date.available2020-12-01T17:29:52Z-
dc.date.issued2020-06-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/180302-
dc.description.abstractBackground: The aim of this study was to biomechanically evaluate the initial stability of a patient-specific root analogue implant (RAI) design with drilling protocol by comparing it to designs without drilling protocol through a 3D finite element analysis (FEA). Methods: A 3D surface model of an RAI for the upper right incisor was constructed. To evaluate the effect of root apex drilling, four modified RAI shapes were designed with the press-fit implantation method: Non-modified, wedge added at root surface, lattice added at root surface, and apex-anchor added at root apex (AA). Each model was subjected to an oblique load of 100 N. To simulate the initial stability of implantation, contact conditions at the implant–bone interface were set to allow for the sliding phenomenon with low friction (frictional coefficient 0.1–0.5). Analysis was performed to evaluate micro-displacements of the implants and peak stress on the surrounding bones. Results: Under all low frictional coefficient conditions, the lowest von Mises stress level on the cortical bone and fewest micro-displacements of the implant were observed in the AA design. Conclusion: In view of these results, the AA design proved superior in reducing the stress concentration on the supporting cortical bone and the micro-displacement of RAI.-
dc.description.statementOfResponsibilityopen-
dc.languageEnglish-
dc.publisherMDPI AG-
dc.relation.isPartOfAPPLIED SCIENCES-BASEL-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleBiomechanical Evaluation of Initial Stability of a Root Analogue Implant Design with Drilling Protocol: A 3D Finite Element Analysis-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Prosthodontics (보철과학교실)-
dc.contributor.googleauthorKi-Sun Lee-
dc.contributor.googleauthorWon-Chang Lee-
dc.contributor.googleauthorPan-Gyu Kim-
dc.contributor.googleauthorJi-Man Park-
dc.contributor.googleauthorKi-Tae Koo-
dc.contributor.googleauthorJae-Jun Ryu-
dc.contributor.googleauthorSang-Wan Shin-
dc.identifier.doi10.3390/app10124104-
dc.contributor.localIdA05595-
dc.relation.journalcodeJ03706-
dc.identifier.eissn2076-3417-
dc.subject.keywordroot analogue implant-
dc.subject.keywordinitial stability-
dc.subject.keywordfinite element analysis-
dc.contributor.alternativeNamePark, Ji-Man-
dc.contributor.affiliatedAuthor박지만-
dc.citation.volume10-
dc.citation.number12-
dc.citation.startPage4104-
dc.identifier.bibliographicCitationAPPLIED SCIENCES-BASEL, Vol.10(12) : 4104, 2020-06-
dc.identifier.rimsid67254-
dc.type.rimsART-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Prosthodontics (보철과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.