0 496

Cited 11 times in

Enhanced Mechanical Properties of ZrO 2-Al 2 O 3 Dental Ceramic Composites by Altering Al 2 O 3 Form

DC Field Value Language
dc.contributor.author권재성-
dc.contributor.author김광만-
dc.date.accessioned2020-06-17T00:26:33Z-
dc.date.available2020-06-17T00:26:33Z-
dc.date.issued2020-04-
dc.identifier.issn0109-5641-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/175968-
dc.description.abstractObjectives: This study evaluates the difference in physical and mechanical properties of ZrO2 ceramics, commonly used in dental applications, altered by three different forms of Al2O3 content; microparticles (m), nanoparticles (n), and microfiber (f). Methods: Three different types of ZrO2-Al2O3 composites were formed using microparticle (m), nanoparticle (n), or microfibre (f) forms of Al2O3. The physical and mechanical properties such as sintering shrinkage, relative density, Vickers hardness, fracture toughness, and biaxial strength were evaluated. A Weibull analysis was performed to assess the strength reliability of the specimens. All data were calculated using the t-test and ANOVA. Results: The sintering shrinkage and relative density of all ceramic composite groups were decreased with the addition of Al2O3. The mechanical properties of ZrO2-Al2O3 (f) composite were higher than that of ZrO2-Al2O3 (m) composite and ZrO2-Al2O3 (n) composite. The maximum hardness, fracture toughness, and biaxial flexural strength were observed for 10 vol% of Al2O3 fibre. When the content of Al2O3 fibre in the matrix was increased above 20 vol%, agglomeration occurred and resulted in a decrease of hardness and toughness. The Weibull modulus value of the ZrO2-Al2O3 (f) composite was the lowest compared to that of other groups. However, characteristic strength (σ0) of ZrO2-Al2O3 (f) the highest value. Significance: The current study demonstrated that the addition of right amount of Al2O3 microfibre into the ZrO2 matrix enhanced the mechanical properties of ZrO2-Al2O3 (f) composite, which would be favourable for dental applications.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherElsevier Science-
dc.relation.isPartOfDENTAL MATERIALS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleEnhanced Mechanical Properties of ZrO 2-Al 2 O 3 Dental Ceramic Composites by Altering Al 2 O 3 Form-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실)-
dc.contributor.googleauthorJi-Young Seo-
dc.contributor.googleauthorDaniel Oh-
dc.contributor.googleauthorDae-Joon Kim-
dc.contributor.googleauthorKwang-Mahn Kim-
dc.contributor.googleauthorJae-Sung Kwon-
dc.identifier.doi10.1016/j.dental.2020.01.014-
dc.contributor.localIdA00247-
dc.contributor.localIdA00312-
dc.relation.journalcodeJ00699-
dc.identifier.eissn1879-0097-
dc.identifier.pmid32035668-
dc.identifier.urlhttps://www.sciencedirect.com/science/article/pii/S0109564120300142-
dc.subject.keywordFibre-
dc.subject.keywordMechanical properties-
dc.subject.keywordZirconia-
dc.subject.keywordZrO(2)–Al(2)O(3)composite-
dc.contributor.alternativeNameKwon, Jae-Sung-
dc.contributor.affiliatedAuthor권재성-
dc.contributor.affiliatedAuthor김광만-
dc.citation.volume36-
dc.citation.number4-
dc.citation.startPagee117-
dc.citation.endPagee125-
dc.identifier.bibliographicCitationDENTAL MATERIALS, Vol.36(4) : e117-e125, 2020-04-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.