0 543

Cited 35 times in

The Hsp27-Mediated IkBα-NFκB Signaling Axis Promotes Radiation-Induced Lung Fibrosis

DC Field Value Language
dc.contributor.author조재호-
dc.date.accessioned2019-10-28T01:55:35Z-
dc.date.available2019-10-28T01:55:35Z-
dc.date.issued2019-
dc.identifier.issn1078-0432-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/171407-
dc.description.abstractPURPOSE: Lung fibrosis is a major side effect experienced by patients after lung cancer radiotherapy. However, effective protection strategies and underlying treatment targets remain unclear. In an effort to improve clinical outcomes, pharmacologic treatment of fibrosis is becoming increasingly popular; however, no ideal therapeutic strategy is yet available. EXPERIMENTAL DESIGN: We used a mouse model to irradiate high focal (90 or 75 Gy) to 3-mm volume of the left lung. Lung tissues of mice were subjected to microarray, mRNA expression, and immunohistochemical analysis. Correlations of radiation (IR)-induced epithelial-mesenchymal transition (EMT) were validated in lung cell lines using appropriate treatments to activate or inhibit selected pathways. RESULTS: The expression of Hsp27 was increased during IR-induced lung fibrosis in a mouse model. Inhibition of functional Hsp27 using shRNA and a synthetic small molecule inhibitor (J2) in lung cells alleviated IR-mediated EMT. The activation of NFkB pathways via direct interaction between Hsp27 and IkBα resulted in increased expressions of Twist, IL-1β, and IL-6 and facilitated IR-mediated EMT, which was identified as an underlying mechanism of Hsp27-mediated fibrosis after IR. J2 also inhibited IR-induced lung fibrosis in an orthotopic lung cancer model, and IR-induced lung fibrotic tissues from patients showed higher expression of Hsp27 than unirradiated lungs. CONCLUSIONS: Collectively, IkBα-NFkB signaling activation by Hsp27, which resulted in the facilitation of Twist, IL1β, and IL6 expression, is involved in the EMT process that is tightly connected to the development of IR-induced lung fibrosis. Our findings also suggest that inhibition of Hsp27 has the potential to become a valuable therapeutic strategy for IR-induced lung fibrosis.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherAmerican Association for Cancer Research-
dc.relation.isPartOfClinical Cancer Research-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleThe Hsp27-Mediated IkBα-NFκB Signaling Axis Promotes Radiation-Induced Lung Fibrosis-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorJee-Youn Kim-
dc.contributor.googleauthorSeulgi Jeon-
dc.contributor.googleauthorYoung Jo Yoo-
dc.contributor.googleauthorHee Jin-
dc.contributor.googleauthorHee Yeon Won-
dc.contributor.googleauthorKyeonghee Yoon-
dc.contributor.googleauthorEun Sook Hwang-
dc.contributor.googleauthorYoon-Jin Lee-
dc.contributor.googleauthorYounghwa Na-
dc.contributor.googleauthorJaeho Cho-
dc.contributor.googleauthorYun-Sil Lee-
dc.identifier.doi10.1158/1078-0432.CCR-18-3900-
dc.contributor.localIdA03901-
dc.relation.journalcodeJ00564-
dc.identifier.pmid31126962-
dc.identifier.urlhttps://clincancerres.aacrjournals.org/content/25/17/5364.long-
dc.contributor.alternativeNameCho, Jae Ho-
dc.contributor.affiliatedAuthor조재호-
dc.citation.volume25-
dc.citation.number17-
dc.citation.startPage5364-
dc.citation.endPage5375-
dc.identifier.bibliographicCitationClinical Cancer Research, Vol.25(17) : 5364-5375, 2019-
dc.identifier.rimsid63818-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.