Cited 31 times in
Transcriptome profiling-based identification of prognostic subtypes and multi-omics signatures of glioblastoma
DC Field | Value | Language |
---|---|---|
dc.contributor.author | 강석구 | - |
dc.contributor.author | 김세훈 | - |
dc.contributor.author | 장종희 | - |
dc.contributor.author | 박준성 | - |
dc.contributor.author | 윤선진 | - |
dc.date.accessioned | 2019-10-28T01:45:22Z | - |
dc.date.available | 2019-10-28T01:45:22Z | - |
dc.date.issued | 2019 | - |
dc.identifier.uri | https://ir.ymlib.yonsei.ac.kr/handle/22282913/171323 | - |
dc.description.abstract | Glioblastoma (GBM) is a lethal tumor, but few biomarkers and molecular subtypes predicting prognosis are available. This study was aimed to identify prognostic subtypes and multi-omics signatures for GBM. Using oncopression and TCGA-GBM datasets, we identified 80 genes most associated with GBM prognosis using correlations between gene expression levels and overall survival of patients. The prognostic score of each sample was calculated using these genes, followed by assigning three prognostic subtypes. This classification was validated in two independent datasets (REMBRANDT and Severance). Functional annotation revealed that invasion- and cell cycle-related gene sets were enriched in poor and favorable group, respectively. The three GBM subtypes were therefore named invasive (poor), mitotic (favorable), and intermediate. Interestingly, invasive subtype showed increased invasiveness, and MGMT methylation was enriched in mitotic subtype, indicating need for different therapeutic strategies according to prognostic subtypes. For clinical convenience, we also identified genes that best distinguished the invasive and mitotic subtypes. Immunohistochemical staining showed that markedly higher expression of PDPN in invasive subtype and of TMEM100 in mitotic subtype (P < 0.001). We expect that this transcriptome-based classification, with multi-omics signatures and biomarkers, can improve molecular understanding of GBM, ultimately leading to precise stratification of patients for therapeutic interventions. | - |
dc.description.statementOfResponsibility | open | - |
dc.format | application/pdf | - |
dc.language | English | - |
dc.publisher | Nature Publishing Group | - |
dc.relation.isPartOf | Scientific Reports | - |
dc.rights | CC BY-NC-ND 2.0 KR | - |
dc.title | Transcriptome profiling-based identification of prognostic subtypes and multi-omics signatures of glioblastoma | - |
dc.type | Article | - |
dc.contributor.college | College of Medicine (의과대학) | - |
dc.contributor.department | Dept. of Neurosurgery (신경외과학교실) | - |
dc.contributor.googleauthor | Junseong Park | - |
dc.contributor.googleauthor | Jin-Kyoung Shim | - |
dc.contributor.googleauthor | Seon-Jin Yoon | - |
dc.contributor.googleauthor | Se Hoon Kim | - |
dc.contributor.googleauthor | Jong Hee Chang | - |
dc.contributor.googleauthor | Seok-Gu Kang | - |
dc.identifier.doi | 10.1038/s41598-019-47066-y | - |
dc.contributor.localId | A00036 | - |
dc.contributor.localId | A00610 | - |
dc.contributor.localId | A03470 | - |
dc.relation.journalcode | J02646 | - |
dc.identifier.eissn | 2045-2322 | - |
dc.identifier.pmid | 31332251 | - |
dc.contributor.alternativeName | Kang, Seok Gu | - |
dc.contributor.affiliatedAuthor | 강석구 | - |
dc.contributor.affiliatedAuthor | 김세훈 | - |
dc.contributor.affiliatedAuthor | 장종희 | - |
dc.citation.volume | 9 | - |
dc.citation.number | 1 | - |
dc.citation.startPage | 10555 | - |
dc.identifier.bibliographicCitation | Scientific Reports, Vol.9(1) : 10555, 2019 | - |
dc.identifier.rimsid | 64040 | - |
dc.type.rims | ART | - |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.