0 465

Cited 4 times in

Dose perturbation by metallic biliary stent in external beam radiotherapy of pancreato-biliary cancers

DC Field Value Language
dc.contributor.author박광우-
dc.contributor.author성진실-
dc.contributor.author이호-
dc.contributor.author정문재-
dc.date.accessioned2019-10-28T01:43:36Z-
dc.date.available2019-10-28T01:43:36Z-
dc.date.issued2019-
dc.identifier.issn0158-9938-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/171311-
dc.description.abstractThis study aims to investigate dose perturbations caused by a metallic biliary stent (MBS) in patients undergoing external beam radiotherapy for cancers in the pancreato-biliary region. Four MBSs with nitinol mesh were examined in the EasyCube® phantom including a custom stent holder fabricated by a 3D printer. For experimental models, three-dimensional conformal radiotherapy plans using a single anterior-posterior (AP) and four-field box (4FB) as well as volumetric modulated arc therapy (VMAT) plan were prepared to deliver the photon beam of 8 Gy to the stent holder. EBT3 film was used to measure dose distributions at four sides surrounding MBS. All MBSs in the AP beam demonstrated mean dose enhancements of 2.3-8.2% at the proximal, left, and right sides. Maximum dose enhancements of 12.3-19.5% appeared at regions surrounding the radiopaque markers. At the location distal to the source, there were mean dose reductions of - 3.6 to - 10.9% and minimum doses of - 11.1 to - 9.5%. The mean and maximum doses with the 4FB plan were in the ranges of - 0.1 to 3.6% and 6.7-14.9%, respectively. The VMAT produced mean doses of - 0.9 to 4.8% and maximum doses of 6.0-15.3%. Dose perturbations were observed with maximum and minimum spots near the stent surface. The use of multiple beams including parallel-opposed pairs reduced dose perturbations caused by the nitinol and radiopaque components within the stent. Special attention is required for patients in whom the radiopaque markers are closely located near critical structures or the target volume.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherSpringer-
dc.relation.isPartOfAUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.titleDose perturbation by metallic biliary stent in external beam radiotherapy of pancreato-biliary cancers-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Radiation Oncology (방사선종양학교실)-
dc.contributor.googleauthorHo Lee-
dc.contributor.googleauthorJeongmin Yoon-
dc.contributor.googleauthorKwangwoo Park-
dc.contributor.googleauthorChai Hong Rim-
dc.contributor.googleauthorMoon Jae Chung-
dc.contributor.googleauthorJinsil Seong-
dc.identifier.doi10.1007/s13246-019-00774-1-
dc.contributor.localIdA01432-
dc.contributor.localIdA01956-
dc.contributor.localIdA03323-
dc.contributor.localIdA03602-
dc.relation.journalcodeJ03661-
dc.identifier.eissn1879-5447-
dc.identifier.pmid31286454-
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs13246-019-00774-1-
dc.subject.keyword3D printer-
dc.subject.keywordCancers in the pancreato-biliary region-
dc.subject.keywordDose perturbation-
dc.subject.keywordExternal beam radiation-
dc.subject.keywordMetallic biliary stent-
dc.contributor.alternativeNamePark, Kwang Woo-
dc.contributor.affiliatedAuthor박광우-
dc.contributor.affiliatedAuthor성진실-
dc.contributor.affiliatedAuthor이호-
dc.contributor.affiliatedAuthor정문재-
dc.citation.volume42-
dc.citation.number3-
dc.citation.startPage745-
dc.citation.endPage756-
dc.identifier.bibliographicCitationAUSTRALASIAN PHYSICAL & ENGINEERING SCIENCES IN MEDICINE, Vol.42(3) : 745-756, 2019-
dc.identifier.rimsid63816-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
1. College of Medicine (의과대학) > Dept. of Radiation Oncology (방사선종양학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.