0 512

Cited 7 times in

Real-Time Detection of Markers in Blood

DC Field Value Language
dc.contributor.author이주희-
dc.date.accessioned2019-07-23T06:37:57Z-
dc.date.available2019-07-23T06:37:57Z-
dc.date.issued2019-
dc.identifier.issn1530-6984-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/170241-
dc.description.abstractThe real-time selective detection of disease-related markers in blood using biosensors has great potential for use in the early diagnosis of diseases and infections. However, this potential has not been realized thus far due to difficulties in interfacing the sensor with blood and achieving transparent circuits that are essential for detecting of target markers (e.g., protein, ions, etc.) in a complex blood environment. Herein, we demonstrate the real-time detection of a specific protein and ion in blood without a skin incision. Complementary metal-oxide-semiconductor technology was used to fabricate silicon micropillar array (SiMPA) electrodes with a height greater than 600 μm, and the surface of the SiMPA electrodes was functionalized with a self-assembling artificial peptide (SAP) as a receptor for target markers in blood, i.e., cholera toxin (CTX) and mercury(II) ions (Hg). The detection of CTX was investigated in both in vitro (phosphate-buffered saline and human blood serum, HBO model) and in vivo (mouse model) modes via impedance analysis. In the in vivo mode, the SiMPA pierces the skin, comes into contact with the blood system, and creates comprehensive circuits that include all the elements such as electrodes, blood, and receptors. The SiMPA achieves electrically transparent circuits and, thus, can selectively detect CTX in the blood in real time with a high sensitivity of 50 pM and 5 nM in the in vitro and in vivo modes, respectively. Mercury(II) ions can also be detected in both the in vitro and the in vivo modes by changing the SAP. The results illustrate that a robust sensor that can detect a variety of molecular species in the blood system in real time that will be helpful for the early diagnosis of disease and infections.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherAmerican Chemical Society-
dc.relation.isPartOfNANO LETTERS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.titleReal-Time Detection of Markers in Blood-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Dermatology (피부과학교실)-
dc.contributor.googleauthorJukwan Na-
dc.contributor.googleauthorMin-Ho Hong-
dc.contributor.googleauthorJun Shik Choi-
dc.contributor.googleauthorHankyul Kwak-
dc.contributor.googleauthorSeungwoo Song-
dc.contributor.googleauthorHyoseok Kim-
dc.contributor.googleauthorYoungcheol Chae-
dc.contributor.googleauthorEunji Cheong-
dc.contributor.googleauthorJu Hee Lee-
dc.contributor.googleauthorYong-beom Lim-
dc.contributor.googleauthorHeon-Jin Choi-
dc.identifier.doi10.1021/acs.nanolett.8b04775-
dc.contributor.localIdA03171-
dc.relation.journalcodeJ02283-
dc.identifier.eissn1530-6992-
dc.identifier.urlhttps://pubs.acs.org/doi/10.1021/acs.nanolett.8b04775-
dc.subject.keywordreal-time detection-
dc.subject.keywordblood sensor-
dc.subject.keywordcomprehensive circuit-
dc.subject.keywordmicropillar-
dc.contributor.alternativeNameLee, Ju Hee-
dc.contributor.affiliatedAuthor이주희-
dc.citation.volume19-
dc.citation.number4-
dc.citation.startPage2291-
dc.citation.endPage2298-
dc.identifier.bibliographicCitationNANO LETTERS, Vol.19(4) : 2291-2298, 2019-
dc.identifier.rimsid62321-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Dermatology (피부과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.