0 531

Cited 2 times in

Bone cement with a modified polyphosphate network structure stimulates hard tissue regeneration

DC Field Value Language
dc.contributor.author권재성-
dc.contributor.author이병현-
dc.contributor.author홍민호-
dc.date.accessioned2018-11-05T16:40:40Z-
dc.date.available2018-11-05T16:40:40Z-
dc.date.issued2016-
dc.identifier.issn0885-3282-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/165038-
dc.description.abstractIn this study, a calcium polyphosphate cement (CpPC) consisting of basic components was investigated to assess its potential for hard tissue regeneration. The added basic components for improving the structural stability, which controlled the setting time, where the setting reaction resulted in the formation of amorphous structure with a re-constructed polyphosphate. Moreover, the characteristics were controlled by the composition, which determined the polyphosphate structure. CpPC exhibited outstanding dissolution rate compared with the common biodegradable cement, brushite cement (2.5 times). Despite high amounts of dissolution products, no significant cytotoxicity ensued. Induction of calcification in MG-63 cells treated with CpPC, the level of calcification increased with increasing CpPC dissolution rate. Induced calcification was observed also in CpPC-treated ST2 cells, in contrast with MG-63 and ST2 treated with brushite cement, for which no calcification was observed. In vivo tests using a rat calvarial defect model showed that resorbed CpPC resulted in favorable host responses and promoted bone formation. Additionally, there was a significant increase in defect closure, and new bone formation progressed from CpPC mid-sites as well as defect margins. From these results, CpPC exhibits significant potential as biodegradable bone substitute for bone regeneration.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherSage Publications-
dc.relation.isPartOfJOURNAL OF BIOMATERIALS APPLICATIONS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAnimals-
dc.subject.MESHBone Cements/chemical synthesis*-
dc.subject.MESHBone Regeneration/physiology*-
dc.subject.MESHBone Substitutes/chemical synthesis*-
dc.subject.MESHCalcium Phosphates/chemistry*-
dc.subject.MESHCell Line-
dc.subject.MESHCell Proliferation/physiology-
dc.subject.MESHGuided Tissue Regeneration/methods-
dc.subject.MESHHardness-
dc.subject.MESHHumans-
dc.subject.MESHMale-
dc.subject.MESHMaterials Testing-
dc.subject.MESHOsteoblasts/cytology-
dc.subject.MESHOsteoblasts/physiology*-
dc.subject.MESHPolyphosphates/chemistry-
dc.subject.MESHRats-
dc.subject.MESHRats, Sprague-Dawley-
dc.subject.MESHSkull Fractures/pathology-
dc.subject.MESHSkull Fractures/therapy*-
dc.subject.MESHTreatment Outcome-
dc.titleBone cement with a modified polyphosphate network structure stimulates hard tissue regeneration-
dc.typeArticle-
dc.contributor.collegeCollege of Dentistry (치과대학)-
dc.contributor.departmentDept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실)-
dc.contributor.googleauthorByung-Hyun Lee-
dc.contributor.googleauthorMin-Ho Hong-
dc.contributor.googleauthorMin-Chul Kim-
dc.contributor.googleauthorYeong-Mu Ko-
dc.contributor.googleauthorHeon-Jin Choi-
dc.contributor.googleauthorYong-Keun Lee-
dc.identifier.doi10.1177/0885328216664239-
dc.contributor.localIdA00247-
dc.contributor.localIdA02799-
dc.contributor.localIdA02976-
dc.contributor.localIdA04392-
dc.relation.journalcodeJ01260-
dc.identifier.eissn1530-8022-
dc.identifier.pmid27511981-
dc.identifier.urlhttp://journals.sagepub.com/doi/abs/10.1177/0885328216664239-
dc.subject.keywordBone cement-
dc.subject.keywordamorphous calcium phosphate-
dc.subject.keywordbiodegradation-
dc.subject.keywordcalcification-
dc.subject.keywordhard tissue regeneration-
dc.subject.keywordin vivo test-
dc.subject.keywordpolyphosphate-
dc.contributor.alternativeNameKwon, Jae Sung-
dc.contributor.alternativeNameLee, Byung Hyun-
dc.contributor.alternativeNameLee, Yong Keun-
dc.contributor.alternativeNameHong, Min Ho-
dc.contributor.affiliatedAuthor권재성-
dc.contributor.affiliatedAuthor이병현-
dc.contributor.affiliatedAuthor홍민호-
dc.citation.volume31-
dc.citation.number3-
dc.citation.startPage344-
dc.citation.endPage356-
dc.identifier.bibliographicCitationJOURNAL OF BIOMATERIALS APPLICATIONS, Vol.31(3) : 344-356, 2016-
dc.identifier.rimsid64803-
dc.type.rimsART-
Appears in Collections:
2. College of Dentistry (치과대학) > Dept. of Dental Biomaterials and Bioengineering (치과생체재료공학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.