317 683

Cited 12 times in

FAM188B enhances cell survival via interaction with USP7

DC Field Value Language
dc.contributor.author김형표-
dc.date.accessioned2018-10-22T13:17:58Z-
dc.date.available2018-10-22T13:17:58Z-
dc.date.issued2018-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/163722-
dc.description.abstractWe have previously reported that FAM188B showed significant differential exon usage in cancers (NCBI GEO GSE30727), but the expression and function of FAM188B is not well characterized. In the present study, we explored the functions of FAM188B by a knockdown strategy, using siRNAs specific for FAM188B in colon cancer cell lines. FAM188B is a novel gene that encodes a protein that is evolutionarily conserved among mammals. Its mRNA has been found to be highly expressed in most solid tumors, including colorectal cancer. FAM188B knockdown induced cell growth inhibition due to an increase in apoptosis in colon cancer cell lines. Interestingly, siFAM188B treatment induced the upregulation and activation of p53, and consequently increased p53-regulated pro-apoptotic proteins, PUMA and BAX. Proteomic analysis of FAM188B immunocomplexes revealed p53 and USP7 as putative FAM188B-interacting proteins. Deletion of the putative USP7-binding motif in FAM188B reduced complex formation of FAM188B with USP7. It is noteworthy that FAM188B knockdown resulted in a decrease in overall ubiquitination in the p53 immunocomplexes, as well as p53 ubiquitination, because USP7 is involved in p53 deubiquitination. FAM188B knockdown inhibited both colony formation and anchorage-independent growth in vitro. In addition, FAM188B knockdown by siRNA reduced tumor growth in xenografted mice, with an increase in p53 proteins. Taken together, our data suggest that FAM188B is a putative oncogene that functions via interaction with USP7. Therefore, control of FAM188B could be a possible target to inhibit tumor growth-
dc.description.statementOfResponsibilityopen-
dc.formatapplication/pdf-
dc.languageEnglish-
dc.publisherNature Pub. Group-
dc.relation.isPartOfCELL DEATH & DISEASE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.titleFAM188B enhances cell survival via interaction with USP7-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine-
dc.contributor.departmentDept. of Environmental Medical Biology-
dc.contributor.googleauthorEun-Seok Choi-
dc.contributor.googleauthorHanna Lee-
dc.contributor.googleauthorJee Young Sung-
dc.contributor.googleauthorChang-Hun Lee-
dc.contributor.googleauthorHyonchol Jang-
dc.contributor.googleauthorKyung Tae Kim-
dc.contributor.googleauthorYong-Nyun Kim-
dc.contributor.googleauthorHyoung-Pyo Kim-
dc.contributor.googleauthorSung-Ho Goh-
dc.identifier.doi10.1038/s41419-018-0650-6-
dc.contributor.localIdA01163-
dc.relation.journalcodeJ00482-
dc.identifier.eissn2041-4889-
dc.identifier.pmid29795372-
dc.contributor.alternativeNameKim, Hyoung Pyo-
dc.contributor.affiliatedAuthorKim, Hyoung Pyo-
dc.citation.volume9-
dc.citation.number6-
dc.citation.startPage633-
dc.identifier.bibliographicCitationCELL DEATH & DISEASE, Vol.9(6) : 633, 2018-
dc.identifier.rimsid59019-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Tropica Medicine (열대의학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.