0 409

Cited 186 times in

In Vivo Self‐Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters

DC Field Value Language
dc.contributor.author정보영-
dc.date.accessioned2018-07-20T07:45:55Z-
dc.date.available2018-07-20T07:45:55Z-
dc.date.issued2017-
dc.identifier.issn1616-301X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/160500-
dc.description.abstractAdditional surgeries for implantable biomedical devices are inevitable to replace discharged batteries, but repeated surgeries can be a risk to patients, causing bleeding, inflammation, and infection. Therefore, developing self‐powered implantable devices is essential to reduce the patient's physical/psychological pain and financial burden. Although wireless communication plays a critical role in implantable biomedical devices that contain the function of data transmitting, it has never been integrated with in vivo piezoelectric self‐powered system due to its high‐level power consumption (microwatt‐scale). Here, wireless communication, which is essential for a ubiquitous healthcare system, is successfully driven with in vivo energy harvesting enabled by high‐performance single‐crystalline (1 − x)Pb(Mg1/3Nb2/3)O3−(x)Pb(Zr,Ti)O3 (PMN‐PZT). The PMN‐PZT energy harvester generates an open‐circuit voltage of 17.8 V and a short‐circuit current of 1.74 µA from porcine heartbeats, which are greater by a factor of 4.45 and 17.5 than those of previously reported in vivo piezoelectric energy harvesting. The energy harvester exhibits excellent biocompatibility, which implies the possibility for applying the device to biomedical applications.-
dc.description.statementOfResponsibilityrestriction-
dc.languageEnglish-
dc.publisherWiley-VCH-
dc.relation.isPartOfADVANCED FUNCTIONAL MATERIALS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rightshttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.titleIn Vivo Self‐Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine-
dc.contributor.departmentDept. of Internal Medicine-
dc.contributor.googleauthorDong Hyun Kim-
dc.contributor.googleauthorHong Ju Shin-
dc.contributor.googleauthorHyunseung Lee-
dc.contributor.googleauthorChang Kyu Jeong-
dc.contributor.googleauthorHyewon Park-
dc.contributor.googleauthorGeon‐Tae Hwang-
dc.contributor.googleauthorHo‐Yong Lee-
dc.contributor.googleauthorDaniel J. Joe-
dc.contributor.googleauthorJae Hyun Han-
dc.contributor.googleauthorSeung Hyun Lee-
dc.contributor.googleauthorJaeha Kim-
dc.contributor.googleauthorBoyoung Joung-
dc.contributor.googleauthorKeon Jae Lee-
dc.identifier.doi10.1002/adfm.201700341-
dc.contributor.localIdA03609-
dc.relation.journalcodeJ00041-
dc.identifier.eissn1616-3028-
dc.identifier.urlhttps://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201700341-
dc.subject.keywordin vivo energy harvesting-
dc.subject.keywordpiezoelectric single crystals-
dc.subject.keywordself-powered systems-
dc.subject.keywordwireless data transmission-
dc.contributor.alternativeNameJoung, Bo Young-
dc.contributor.affiliatedAuthorJoung, Bo Young-
dc.citation.volume27-
dc.citation.number25-
dc.citation.startPage1700341-
dc.identifier.bibliographicCitationADVANCED FUNCTIONAL MATERIALS, Vol.27(25) : 1700341, 2017-
dc.identifier.rimsid43747-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.