0 656

Cited 26 times in

Targeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma

DC Field Value Language
dc.contributor.author서준영-
dc.contributor.author최경미-
dc.date.accessioned2017-10-26T07:31:32Z-
dc.date.available2017-10-26T07:31:32Z-
dc.date.issued2016-
dc.identifier.issn0006-291X-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/152142-
dc.description.abstractOrnithine decarboxylase 1 (ODC1), a metabolic enzyme critically involved in the polyamine biosynthesis, is commonly upregulated in hepatocellular carcinoma (HCC). Despite its altered expression in human HCC tissues, the molecular mechanism by which ODC1 alters the course of HCC progression and functions in HCC cell survival is unknown. Here we identified that silencing of ODC1 expression with small interfering (si) RNA causes inhibition of HCC cell growth through blockade of cell cycle progression and induction of apoptosis. Next, to obtain insights into the molecular changes in response to ODC1 knockdown, global changes in gene expression were examined using RNA sequencing. It revealed that 119 genes show same directional regulation (76 up- and 43 down-regulated) in both Huh1 and Huh7 cells and were considered as a common ODC1 knockdown signature. Particularly, we found through a network analysis that KLF2, which is known to inhibit PPARγ expression and adipogenesis, was commonly up-regulated. Subsequent Western blotting affirmed that the downregulation of ODC1 was accompanied by a decrease in the levels of PPARγ as well as of PARP-1, cyclin E1 and pro-caspase 9 delaying cell cycle progression and accelerating apoptotic signaling. Following the down-regulation of PPARγ expression, ODC1 silencing resulted in a strong inhibition in the expression of important regulators of glucose transport and lipid biogenesis, and caused a marked decrease in lipid droplet accumulation. In addition, ODC1 silencing significantly inhibited the growth of human HCC xenografts in nude mice. These findings indicate that the function of ODC1 is correlated with HCC lipogenesis and suggest that targeting ODC1 could be an attractive option for molecular therapy of HCC.-
dc.description.statementOfResponsibilityrestriction-
dc.publisherElsevier-
dc.relation.isPartOfBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAnimals-
dc.subject.MESHApoptosis/genetics-
dc.subject.MESHBlotting, Western-
dc.subject.MESHCarcinoma, Hepatocellular/enzymology-
dc.subject.MESHCarcinoma, Hepatocellular/genetics*-
dc.subject.MESHCarcinoma, Hepatocellular/pathology-
dc.subject.MESHCaspase 9/genetics-
dc.subject.MESHCaspase 9/metabolism-
dc.subject.MESHCell Cycle/genetics-
dc.subject.MESHCell Line, Tumor-
dc.subject.MESHCell Proliferation/genetics*-
dc.subject.MESHCyclin E/genetics-
dc.subject.MESHCyclin E/metabolism-
dc.subject.MESHGene Expression Regulation, Neoplastic-
dc.subject.MESHGene Regulatory Networks-
dc.subject.MESHHumans-
dc.subject.MESHKruppel-Like Transcription Factors/genetics-
dc.subject.MESHKruppel-Like Transcription Factors/metabolism-
dc.subject.MESHLipid Metabolism/genetics*-
dc.subject.MESHLiver Neoplasms/enzymology-
dc.subject.MESHLiver Neoplasms/genetics*-
dc.subject.MESHLiver Neoplasms/pathology-
dc.subject.MESHMale-
dc.subject.MESHMice, Inbred BALB C-
dc.subject.MESHMice, Nude-
dc.subject.MESHOncogene Proteins/genetics-
dc.subject.MESHOncogene Proteins/metabolism-
dc.subject.MESHOrnithine Decarboxylase/genetics*-
dc.subject.MESHOrnithine Decarboxylase/metabolism-
dc.subject.MESHPPAR gamma/genetics-
dc.subject.MESHPPAR gamma/metabolism-
dc.subject.MESHPoly (ADP-Ribose) Polymerase-1/genetics-
dc.subject.MESHPoly (ADP-Ribose) Polymerase-1/metabolism-
dc.subject.MESHRNA Interference*-
dc.subject.MESHRNAi Therapeutics/methods-
dc.subject.MESHReverse Transcriptase Polymerase Chain Reaction-
dc.subject.MESHXenograft Model Antitumor Assays/methods-
dc.titleTargeting ODC1 inhibits tumor growth through reduction of lipid metabolism in human hepatocellular carcinoma-
dc.typeArticle-
dc.publisher.locationUnited States-
dc.contributor.collegeCollege of Medicine-
dc.contributor.departmentDept. of Life Science-
dc.contributor.googleauthorYunseon Choi-
dc.contributor.googleauthorSang Taek Oh-
dc.contributor.googleauthorMin-Ah Won-
dc.contributor.googleauthorKyung Mi Choi-
dc.contributor.googleauthorMin Ji Ko-
dc.contributor.googleauthorDaekwan Seo-
dc.contributor.googleauthorTae-Won Jeon-
dc.contributor.googleauthorIn Hye Baik-
dc.contributor.googleauthorSang-Kyu Ye-
dc.contributor.googleauthorKeon Uk Park-
dc.contributor.googleauthorIn-Chul Park-
dc.contributor.googleauthorByeong-Churl Jang-
dc.contributor.googleauthorJun-Young Seo-
dc.contributor.googleauthorYun-Han Lee-
dc.identifier.doi10.1016/j.bbrc.2016.09.002-
dc.contributor.localIdA05051-
dc.contributor.localIdA01911-
dc.relation.journalcodeJ00281-
dc.identifier.eissn1090-2104-
dc.identifier.pmid27592554-
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S0006291X16314449-
dc.subject.keywordHCC-
dc.subject.keywordKLF2-
dc.subject.keywordLipogenesis-
dc.subject.keywordODC1-
dc.subject.keywordPPARγ-
dc.subject.keywordPolyamine-
dc.contributor.alternativeNameSeo, Jun Young-
dc.contributor.alternativeNameChoi, Kyung Mi-
dc.contributor.affiliatedAuthorChoi, Kyung Mi-
dc.contributor.affiliatedAuthorSeo, Jun Young-
dc.citation.volume478-
dc.citation.number4-
dc.citation.startPage1674-
dc.citation.endPage1681-
dc.identifier.bibliographicCitationBIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, Vol.478(4) : 1674-1681, 2016-
dc.date.modified2017-10-24-
dc.identifier.rimsid46921-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > BioMedical Science Institute (의생명과학부) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.