0 416

Cited 0 times in

Cerebrospinal Fluid and Plasma Concentrations of Leptin, NPY, andα -MSH in Obese Women and Their Relationship to Negative Energy Balance

Authors
 Su-Youn Nam  ;  Jurgen Kratzsch  ;  Kyung Wook Kim  ;  Kyung Rae Kim  ;  Sung-Kil Lim  ;  Claude Marcus 
Citation
 JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, Vol.86(10) : 4849-4853, 2001 
Journal Title
JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM
ISSN
 0021-972X 
Issue Date
2001
MeSH
Adult ; Energy Metabolism* ; Female ; Humans ; Leptin/blood ; Leptin/cerebrospinal fluid* ; Neuropeptide Y/blood ; Neuropeptide Y/cerebrospinal fluid* ; Neuropeptide Y/genetics ; Obesity/metabolism* ; Receptor, Melanocortin, Type 4 ; Receptors, Corticotropin/physiology ; Receptors, Leptin ; alpha-MSH/blood ; alpha-MSH/cerebrospinal fluid*
Abstract
Leptin and its principal mediators, NPY and α-MSH are postulated to play a pivotal role in energy balance. To determine the possibility of the disturbance in neuropeptides in human obesity and their consequent changes in response to negative energy balance, we evaluated plasma and cerebrospinal fluid (CSF) leptin, NPY, and α-MSH levels in obese women before and after weight loss in comparison with normal control women. Subjects included 16 obese women [mean body mass index (BMI), 35.6 kg/m2] before and after weight loss induced by a 2-wk very low caloric diet (800 kcal/d) and 14 normal weight women (mean BMI, 20.4 kg/m2). The CSF to plasma leptin ratio in normal weight subjects was 2.3-fold higher than that in obese subjects. After weight loss in obese subjects, plasma leptin levels decreased by 40% and CSF levels decreased by 51%. There was a positive linear correlation between CSF and plasma leptin levels at baseline in obese subjects (r = 0.74, P < 0.05) and a positive logarithmic correlation in normal weight subjects (r = 0.89, P < 0.05) and in obese subjects after weight loss (r = 0.64, P < 0.05). The BMI was negatively correlated with the CSF to plasma leptin ratio (r = −0.86, P < 0.05) in all subjects. Neither the baseline plasma levels nor the baseline CSF levels of NPY were different between normal weight subjects and obese subjects. After weight loss, the CSF NPY level decreased significantly compared with baseline values in obese subjects. The α-MSH levels in plasma and CSF did not differ significantly from controls in obese subjects at baseline or after weight loss. Baseline CSF leptin level correlated with neither the baseline CSF NPY level nor the baseline CSF α-MSH level.
In conclusion, this study demonstrated that the efficiency of brain leptin delivery is reduced in human obesity and central nervous system leptin uptake involves a combination of a saturable and an unsaturable mechanism. CSF NPY and α-MSH did not differ from controls in human obesity, and the CSF NPY level decreased significantly whereas α-MSH did not differ after weight loss in obese subjects compared with baseline. There was no significant correlation between CSF leptin and CSF NPY or α-MSH. This could be the result of leptin resistance present in human obesity and/or the more complex mechanisms involved in modulating appetite and regulating energy balance in human obesity.
Full Text
http://press.endocrine.org/doi/abs/10.1210/jcem.86.10.7939
DOI
10.1210/jcem.86.10.7939
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Internal Medicine (내과학교실) > 1. Journal Papers
Yonsei Authors
Lim, Sung Kil(임승길)
URI
https://ir.ymlib.yonsei.ac.kr/handle/22282913/142735
사서에게 알리기
  feedback

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Browse

Links