0 528

Cited 29 times in

Biomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine

DC Field Value Language
dc.contributor.author이성-
dc.date.accessioned2016-02-04T11:45:56Z-
dc.date.available2016-02-04T11:45:56Z-
dc.date.issued2015-
dc.identifier.issn1878-8750-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/141152-
dc.description.abstractOBJECTIVE: In vertebrae with low bone mineral densities pull out strength is often poor, thus various substances have been used to fill screw holes before screw placement for corrective spine surgery. We performed biomechanical cadaveric studies to compare nonaugmented pedicle screws versus hydroxyapatite, calcium phosphate, or polymethylmethacrylate augmented pedicle screws for screw tightening torques and pull out strengths in spine procedures requiring bone screw insertion. METHODS: Seven human cadaveric T10-L1 spines with 28 vertebral bodies were examined by x-ray to exclude bony abnormalities. Dual-energy x-ray absorptiometry scans evaluated bone mineral densities. Twenty of 28 vertebrae underwent ipsilateral fluoroscopic placement of 6-mm holes augmented with hydroxyapatite, calcium phosphate, or polymethylmethacrylate, followed by transpedicular screw placements. Controls were pedicle screw placements in the contralateral hemivertebrae without augmentation. All groups were evaluated for axial pull out strength using a biomechanical loading frame. RESULTS: Mean pedicle screw axial pull out strength compared with controls increased by 12.5% in hydroxyapatite augmented hemivertebrae (P = 0.600) and by 14.9% in calcium phosphate augmented hemivertebrae (P = 0.234), but the increase was not significant for either method. Pull out strength of polymethylmethacrylate versus hydroxyapatite augmented pedicle screws was 60.8% higher (P = 0.028). CONCLUSIONS: Hydroxyapatite and calcium phosphate augmentation in osteoporotic vertebrae showed a trend toward increased pedicle screw pull out strength versus controls. Pedicle screw pull out force of polymethylmethacrylate in the insertion stage was higher than that of hydroxyapatite. However, hydroxyapatite is likely a better clinical alternative to polymethylmethacrylate, as hydroxyapatite augmentation, unlike polymethylmethacrylate augmentation, stimulates bone growth and can be revised.-
dc.description.statementOfResponsibilityopen-
dc.format.extent976~981-
dc.relation.isPartOfWORLD NEUROSURGERY-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAbsorptiometry, Photon-
dc.subject.MESHBiocompatible Materials*-
dc.subject.MESHBiomechanical Phenomena-
dc.subject.MESHBone Cements*-
dc.subject.MESHCadaver-
dc.subject.MESHCalcium Phosphates*-
dc.subject.MESHDurapatite*-
dc.subject.MESHHumans-
dc.subject.MESHOsteoporosis/pathology-
dc.subject.MESHOsteoporosis/surgery-
dc.subject.MESHPedicle Screws*-
dc.subject.MESHPolymethyl Methacrylate*-
dc.subject.MESHSpine/parasitology-
dc.subject.MESHSpine/pathology-
dc.subject.MESHSpine/surgery*-
dc.titleBiomechanical Comparisons of Pull Out Strengths After Pedicle Screw Augmentation with Hydroxyapatite, Calcium Phosphate, or Polymethylmethacrylate in the Cadaveric Spine-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Neurosurgery (신경외과학)-
dc.contributor.googleauthorSeong Yi-
dc.contributor.googleauthorDae-Cheol Rim-
dc.contributor.googleauthorSeoung Woo Park-
dc.contributor.googleauthorJudith A. Murovic-
dc.contributor.googleauthorJesse Lim-
dc.contributor.googleauthorJon Park-
dc.identifier.doi10.1016/j.wneu.2015.01.056-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA02864-
dc.relation.journalcodeJ02806-
dc.identifier.eissn1878-8769-
dc.identifier.pmid25769482-
dc.identifier.urlhttp://www.sciencedirect.com/science/article/pii/S1878875015001254-
dc.subject.keywordBiomechanics-
dc.subject.keywordCalcium phosphate-
dc.subject.keywordHuman cadaver-
dc.subject.keywordHydroxyapatite-
dc.subject.keywordOsteoporosis-
dc.subject.keywordPedicle screw-
dc.subject.keywordPolymethylmethacrylate-
dc.subject.keywordPull out strength-
dc.subject.keywordSpine-
dc.contributor.alternativeNameYi, Seong-
dc.contributor.affiliatedAuthorYi, Seong-
dc.rights.accessRightsnot free-
dc.citation.volume83-
dc.citation.number6-
dc.citation.startPage976-
dc.citation.endPage981-
dc.identifier.bibliographicCitationWORLD NEUROSURGERY, Vol.83(6) : 976-981, 2015-
dc.identifier.rimsid30546-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Neurosurgery (신경외과학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.