Cited 115 times in

A spatial scan statistic for multinomial data

DC Field Value Language
dc.contributor.author정인경-
dc.date.accessioned2015-04-23T17:09:49Z-
dc.date.available2015-04-23T17:09:49Z-
dc.date.issued2010-
dc.identifier.issn0277-6715-
dc.identifier.urihttps://ir.ymlib.yonsei.ac.kr/handle/22282913/101940-
dc.description.abstractAs a geographical cluster detection analysis tool, the spatial scan statistic has been developed for different types of data such as Bernoulli, Poisson, ordinal, exponential and normal. Another interesting data type is multinomial. For example, one may want to find clusters where the disease-type distribution is statistically significantly different from the rest of the study region when there are different types of disease. In this paper, we propose a spatial scan statistic for such data, which is useful for geographical cluster detection analysis for categorical data without any intrinsic order information. The proposed method is applied to meningitis data consisting of five different disease categories to identify areas with distinct disease-type patterns in two counties in the U.K. The performance of the method is evaluated through a simulation study-
dc.description.statementOfResponsibilityopen-
dc.format.extent1910~1918-
dc.relation.isPartOfSTATISTICS IN MEDICINE-
dc.rightsCC BY-NC-ND 2.0 KR-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/2.0/kr/-
dc.subject.MESHAdolescent-
dc.subject.MESHAlgorithms-
dc.subject.MESHCluster Analysis-
dc.subject.MESHHumans-
dc.subject.MESHMeningitis/epidemiology-
dc.subject.MESHModels, Statistical*-
dc.subject.MESHPopulation Surveillance/methods*-
dc.subject.MESHUnited Kingdom/epidemiology-
dc.titleA spatial scan statistic for multinomial data-
dc.typeArticle-
dc.contributor.collegeCollege of Medicine (의과대학)-
dc.contributor.departmentDept. of Biostatistics (의학통계학)-
dc.contributor.googleauthorInkyung Jung-
dc.contributor.googleauthorMartin Kulldorff-
dc.contributor.googleauthorOtukei John Richard-
dc.identifier.doi10.1002/sim.3951-
dc.admin.authorfalse-
dc.admin.mappingfalse-
dc.contributor.localIdA03693-
dc.relation.journalcodeJ02678-
dc.identifier.eissn1097-0258-
dc.identifier.pmid20680984-
dc.identifier.urlhttp://onlinelibrary.wiley.com/doi/10.1002/sim.3951/abstract-
dc.subject.keywordcategorical data-
dc.subject.keywordcluster detection-
dc.subject.keywordgeographical disease surveillance-
dc.subject.keywordmeningitis-
dc.contributor.alternativeNameJung, In Kyung-
dc.contributor.affiliatedAuthorJung, In Kyung-
dc.citation.volume29-
dc.citation.number18-
dc.citation.startPage1910-
dc.citation.endPage1918-
dc.identifier.bibliographicCitationSTATISTICS IN MEDICINE, Vol.29(18) : 1910-1918, 2010-
dc.identifier.rimsid50960-
dc.type.rimsART-
Appears in Collections:
1. College of Medicine (의과대학) > Dept. of Biomedical Systems Informatics (의생명시스템정보학교실) > 1. Journal Papers

qrcode

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.