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Abstract

Objectives: Although Gadolinium enhanced bFFE is commonly used to evaluate cisternal tumors, banding artifact may
interrupt interpretation and adjacent nerve and vessels differentiation is known to be difficult. We analyzed the qualities of
Gd enhanced 3D PDDE in the evaluation of cisternal tumors, comparing with bFFE.

Material and Methods: Forty five cisternal tumors (33 schwannoma and 12 meningioma) on both bFFE and PDDE were
retrospectively reviewed. For quantitative analysis, contrast ratios of CSF to tumor and tumor to parenchyma (CRC/T and CRT/

P) on both sequences were compared by paired t-test. For qualitative analysis, the readers gauged the qualities of the two
MR sequences with respect to the degree of demarcating cisternal structures (tumor, basilar artery, AICA, trigeminal nerve,
facial nerve and vestibulocochlear nerve).

Results: In quantitative analysis, CRC/T and CRT/P on 3D PDDE was significantly lower than that of 3D bFFE (p,0.01). In
qualitative analysis, basilar artery, AICA, facial nerve and vestibulocochlear nerves were significantly better demarcated on
3D PDDE than on bFFE (p,0.01). The degree of demarcation of tumor on 3D PDDE was not significantly different with that
on 3D bFFE (p = 0.13).

Conclusion: Although the contrast between tumor and the surrounding structures are reduced, Gd enhanced 3D PDDE
provides better demarcation of cranial nerves and major vessels adjacent to cisternal tumors than Gd enhanced bFFE
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Introduction

Balanced steady-stated free precession (bSSFP) sequences such

as true free induction with steady precession (trueFISP), fast

imaging employing steady-state acquisition (FIESTA), and bal-

anced fast field echo (bFFE) are commonly used to evaluate

structures in the prepontine cistern and cerebellopontine angle

(CPA). This sequence has high spatial resolution and heavily T2

contrast between cerebrospinal fluid (CSF) and other structures,

such as nerve, bone and brain parenchyma [1–4]. With

gadolinium contrast media, it provides excellent visualization of

the boundary of the cisternal tumors with surrounding structures

because it has inherent T1 contrast [5–8].

However, it is difficult to discriminate cranial nerves, small

vessels, and skull base structures because all structures except for

CSF are outlined as hypo-intense areas [9,10], while large vessels

show hyper-intensities and are confused with surrounding CSF

spaces [1,11]. Furthermore, banding artifact inherent to bSSFP

may make it difficult to distinguish structures in the CPA [12,13].

These are fatal disadvantages of this sequence, because identifi-

cation of exact relationship between the tumor and its surrounding

structures may have implications in preventing unnecessary

hemorrhage during surgery as well as for neural preservation.

3D proton density driven equilibrium (3D PDDE) may be used

for vessel wall imaging because it provides excellent blood

suppression and MR cisternographic features [14]. DRIVE pulses

at the echo train of 3D proton density push residual transverse

magnetization back to the longitudinal axis, providing T2 contrast

with a higher signal from CSF [15,16]. We incidentally found that

cisternal tumors show strong enhancement with clear margin and

associated structures are discernible with consistent signal inten-

sities on Gd 3D PDDE.

The aim of our study is to analyze the qualities of Gd enhanced

3D PDDE in the evaluation of cisternal tumors and associated

structures, comparing with Gd enhanced bFFE.
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Materials and Methods

Patients
The protocol for this retrospective study was approved by

Gangnam Severance Hospital, institutional review board and

informed consent for this retrospective study was not required.

Patient records and information were anonymized and de-

identified prior to analysis. We identified 45 patients (17 men

and 28 women; age range 42–78 years, mean age 56.8 years) who

have schwannoma (n = 33) or meningioma (n = 12) from our

medical record system between May 2013 and Jan 2014. Inclusion

criteria was as follows; (1) Gd enhanced MRI sequences, which

they performed, should include both bFFE and 3D PDDE after

Gd injection. (2) Tumor location was prepontine cistern(n = 13) or

CPA (n = 32). The diagnosis was based on morphological findings

of MRI as follows; If the mass showed extension along the course

of cranial nerves with or without internal cysts and hemorrhage, it

was diagnosed as the schwannoma. If the mass showed broad base

with dural ‘tail’, it was diagnosed as the meningioma [17,18].

There were no equivocal cases with diagnosis under morpholog-

ical findings. The mean size of cisternal tumors was 20.2 mm

(range, 5.9,43.5 mm).

Imaging acquisition
Gd enhanced MRI was performed using 3T MR units (Achieva;

Philips Medical Systems, Best, Netherlands) and a 32-channel

sensitivity encoding (SENSE) head coil on all patients. T2 axial

turbo spin echo images (TR/TE = 6090/100 ms, thick-

ness = 2 mm, gap = 0.2 mm, field of view = 2306230 mm, ma-

trix = 2566223), T2 coronal turbo spin echo images (TR/

TE = 3000/100 ms, thickness = 2 mm, gap = 0.1 mm, field of

view = 2006200 mm, matrix = 5126256) were acquired. After

injecting 0.1 mmol/kg gadobutrol, 3D bFFE (TR/TE = 6.7/

2.7 ms, flip angle = 45, thickness = 0.4 mm, field of

view = 1806180 mm, matrix = 4486450 [reconstructed into

4806480], number of signal averaged = 5, acquisition time = 7–

8 min) and 3D PDDE (TR/TE = 2000/32.2 ms, thick-

ness = 0.4 mm, field of view = 1806180 mm, matrix = 4806480,

number of signal averaged = 1, echo train length = 63, acquisition

time = 8,9 min) were obtained. A variable-flip-angle refocusing

plus train was used with a min of 50 and a max of 120. In both

sequences, the axial plane was scanned parallel to the orbitomeatal

line. Oblique sagittal and coronal images were reconstructed.

Figure 1. A 42-year-old female with left petrous apex meningioma. (A) The CRC/T was 2.04 and CRT/P was 2.85 on Gd enhanced 3D bFFE.
Tumor is well differentiated from brain parenchyma, CSF space and petrous bone (visual scores of two readers : 3). The left trigeminal nerve is well
delineated (white arrow). (B) The CRC/T was 1.06 and CRT/P was 1.44 on Gd enhanced 3D PDDE. Tumor is well differentiated from brain parenchyma,
CSF space and petrous bone (visual scores of two readers : 3). The left trigeminal nerve is also well delineated (white arrow).
doi:10.1371/journal.pone.0103215.g001

Table 1. Comparison of signal intensity and contrast ratios of tumor, CSF and parenchyma between Gd enhanced bFFE and 3D
PDDE.

bFFE ICC 3D PDDE ICC p

SIT 962.356179.25 0.91 1445.366242.82 0.94 ,0.01

SIC 1945.37672.4 0.78 1576.266139.27 0.95 ,0.01

SIP 315.53627.72 0.85 1021.87684.07 0.88 ,0.01

CRC/T 2.0860.33 0.95 1.1260.24 0.93 ,0.01

CRT/P 3.0760.65 0.92 1.4260.21 0.95 ,0.01

Note - SIT indicates the signal intensity of tumor, SIC indicates the signal intensity of CSF, SIP indicates the signal intensity of parenchyma, CRC/T indicates the ratio of SIC
to SIT, CRT/P indicates the ratio of SIT to SIP. ICC indicates intraclass correlation coefficient.
doi:10.1371/journal.pone.0103215.t001
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Quantitative analysis
A radiology resident (M.R.Y) drew three different circular ROIs

(area = 10 mm2) within the tumor, avoiding necrosis and hemor-

rhage. The average value of three different ROIs was regarded as

the signal intensity of tumor (SIT). The signal intensity of CSF

(SIC) was measured with the same method which draw ROIs in

the ipsilateral cistern, avoiding adjacent vessel and nerves. The

signal intensity of parenchyma (SIP) was measured with the same

method, drawing ROIs in the pons. Contrast ratio of CSF to

tumor (CRC/T) was defined as the signal intensity of CSF over that

of tumor. Contrast ratio of tumor to parenchyma (CRT/P) was

defined as the signal intensity of tumor over that of pons. Another

reader, a board certified neuroradiologist (S.J.A), independently

measured SIT, SIC, SIP ,CRC/T and CRT/P, Average values

between the two readers were used for further analysis. We

compared SIT, SIC, SIP ,CRC/T and CRT/P between the two

sequences.

Qualitative analysis
Two readers (S.H.S, T.S.C) independently evaluated 45

cisternal tumors and associated structures for both 3D bFFE and

3D PDDE. The two readers were board-certified radiologists with

7 and 21 years of reading brain MRIs respectively. There were

two sessions with 2-week intervals. At the first session, the first

reader was asked to review 3D bFFE and the second reader was

asked to review 3D PDDE. At the second session, reviewers

evaluated the other sequences to reduce bias. The reviewers

gauged the quality of two MR sequences with respect to the degree

of demarcating cisternal structures. The evaluated structures were

as follows: 1) tumor. 2) basilar artery. 3) ipsilateral anterior inferior

cerebellar artery (AICA). 4) ipsilateral facial nerve. 5) ipsilateral

vestibulocochlear nerve. 6) ipsilateral trigeminal nerve. Reviewers

used a three-point scale system for evaluation: Grade 1 = The

evaluated structure was ‘‘not’’ discriminated from surrounding

structures in any plane. Grade 2 = The evaluated structure was

discriminated from surrounding structures but contrast is not

‘‘good’’ Grade 3 = The evaluated structures were clearly discrim-

inated from surrounding structures and have good contrast. In

addition, the resident was requested to record existence of MR

banding artifacts. If banding artifacts extended into prepontine

and CPA cistern and influenced interpretation, they were also

recorded.

Statistical analysis
Statistical analyses were performed using SPSS version 20.0

(SPSS Inc., Chicago, IL, USA).

For quantitative analysis, The inter-observer agreement be-

tween the two readers was evaluated by using the intraclass

correlation coefficient(ICC) [19] and the ICC greater than 0.75

was considered to represent good agreement [20]. SIT, SIC, SIP,

CRC/T and CRT/P from the both sequences were compared by

paired t-test. For qualitative analysis, inter-observer agreement

was analyzed by kappa statistics. Visual grades by reviewer 1 were

regarded as representative values because of excellent inter-

observer agreement. Comparison of visual grades between two

sequences were assessed by McNemar’s test. P,0.05 was

considered statistically significant.

Results

Quantitative analysis
SIT, SIC, SIP, CRC/T and CRT/P in both sequences are

summarized in Table 1. SIT in Gd 3D PDDE was significantly

higher than SIT in Gd enhanced 3D bFFE(1445.366242.82 for

3D PDDE; 962.356179.25 for 3D bFFE, p,0.01). SIC in Gd

3D PDDE was significantly lower than SIC in Gd 3D

bFFE(1576.266139.27 for 3D PDDE; 1945672.4 for 3D bFFE,

p,0.01). SIP in Gd 3D PDDE was significantly higher than SIP in

Gd 3D bFFE(1021.87684.07 for 3D PDDE; 315.53627.72 for

3D bFFE, p,0.01). CRC/T in Gd 3D PDDE is significantly lower

than CRC/T in Gd enhanced 3D bFFE (1.1260.24 for 3D PDDE;

2.0860.33 for 3D bFFE, P,0.01). CRT/P in Gd enhanced 3D

PDDE is significantly lower than CRT/P in Gd enhanced 3D

bFFE (1.4260.21 for 3D PDDE ; 3.0760.65 for 3D FFE, P,0.01)

(Fig. 1). The inter-observer agreements in SIT, SIC, SIP ,CRC/T

and CRT/P were excellent (ICCs .0.78)

Qualitative analysis
Visual grading of demarcation of cisternal anatomical structures

in Gd enhanced 3D bFFE and 3D PDDE is summarized in

Table 2. The cisternal tumors were well discriminated from

Figure 2. A 54-year-old female with a schwannoma in the right CPA. (A) On Gd enhanced 3D bFFE axial image, basilar artery (white arrow)
and right AICA (arrow head) adjacent to tumor border are not demarcated due to various signals from vessels. (B) On Gd enhanced 3D PDDE, basilar
artery (white arrow) and right AICA (arrow head) adjacent to tumor border are clearly visualized due to excellent black blood imaging.
doi:10.1371/journal.pone.0103215.g002
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surrounding structures in both sequences and the visual grading

scores were not significantly different between both sequences

(p = 0.13). Ipsilateral trigeminal nerve(CN V) was well demarcated

in both sequences without significant difference. However, in

discrimination of basilar artery and ipsilateral AICA from

surrounding structures, 3D PDDE was significantly better than

3D bFFE. 3D PDDE had more grade 3 scores , while having less

grade 1 and 2 scores, compared with 3D bFFE (grade 3 for basilar

artery: 45/45 (100%) for 3D PDDE vs 7/45 (15.6%) for 3D bFFE,

p,0.01; grade 3 for AICA: 26/45 (57.8%) for 3D PDDE vs 7/45

(15.6%), p,0.01, Fig. 2). In discrimination of facial nerve and

vestibulocochlear nerve from surrounding structures, 3D PDDE

was significantly better than 3D bFFE. 3D PDDE had more grade

3 scores , while having less grade 1 and 2 scores, compared with

3D bFFE (grade 3 for facial nerve: 27/45 (60%) for 3D PDDE vs
15/45 (33.3%) for 3D bFFE, p,0.01; grade 3 for vestibuloco-

chlear nerve: 30/45 (66.7%) for 3D PDDE vs 15/45(33.3%),

p,0.01).

The interobserver agreements between two readers were either

good or excellent in grading the two sequences (kappa.0.71).

Twenty five out of 45 lesions (56%) showed banding artifacts on

3D bFFE. Seventeen of 45 lesions (38%) had severe banding

artifacts that could interrupt interpretation(Fig. 3). While, there

was no banding artifact on 3D PDDE

Discussion

Although contrast between tumor and surrounding structures

(CSF and brain parenchyma) on Gd enhanced 3D PDDE are

significantly lower than Gd enhanced 3D bFFE, qualitative gauge

of cisternal tumor on Gd enhanced 3D PDDE were not

significantly different with that on Gd enhanced bFFE. The

degree of tumor demarcation is affected by contrast with CSF and

brain parenchyma as well as adjacent vessels and nerves. Contrary

to bFFE, on Gd enhanced 3D PDDE, adjacent nerves and vessels

were clearly demarcated which has a clinical impact in determin-

ing surgical plan. Moreover, the excellent MR cisternographic

features without banding artifact may compensate the relatively

low contrast ratios on Gd enhanced 3D PDDE.

On Gd enhanced 3D PDDE, basilar artery and AICA adjacent

to cisternal tumors were clearly demarcated. 3D PDDE provides

robust flow independent black blood imaging showing homoge-

nous dark vessel signal intensity [21,22]. On the contrary, large

vessels on 3D bFFE show hyper signal intensities which may cause

confusion with surrounding bright CSF. The signal intensity

difference between nerve and vessels on Gd enhanced 3D PDDE

makes it easier differentiating nerve from vessels. Lower cranial

nerves are confused with adjacent small vessels on bFFE, because

both are demonstrated as hypo-intensity. However, cranial nerves

showed relatively higher signal than vessels on 3D PDDE because

the signal intensity depends on proton density.

Figure 3. A 61-year-old female with a schwannoma in the left internal auditory canal. (A) On Gd enhanced 3D bFFE, the anterior margin of
tumor is not well demarcated due to banding artifact (arrow). Facial and vestibulocochlear nerves are not clearly visualized due to banding artifact
(dotted arrow). (B) On Gd enhanced 3D PDDE, the boundary of tumor is clear. Facial and vestibulocochlear nerves are well visualized without banding
artifact (dotted arrow). (C) Tumor and cranial nerves are not clearly demarcated on 3D bFFE reconstruction image perpendicular to the left internal
auditory canal. (D) They are clearly demarcated on 3D PDDE reconstruction image.
doi:10.1371/journal.pone.0103215.g003
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Another major drawback of bFFE is the banding artifact which

is a linear band of low signal inherent to 3D bFFE [23,24].

Seventeen of 45 lesions (38%) had severe banding artifacts

extending into cistern that mimicked cranial nerves and vessels

even though relatively short TR and proper shimming were

performed. However, 3D PDDE did not show any banding

artifact because this technique is in the spin echo family and is less

sensitive to field inhomogeneity.

This study has some limitations. Firstly, for quantitative analysis

of contrast between tumor and surrounding structures, we

calculated CR instead of contrast-to-noise ratio (CNR). This is

because a direct measurement of noise was impossible with a

SENSE technique that might induce artificial suppression of

background noise [25]. Secondly, the cohort of this study is limited

to patients with schwannoma and meningioma. The usefulness of

Gd enhanced 3D PDDE is questionable in the evaluation of other

cisternal lesions such as epidermoid cyst, ependymoma and

cavernous malformations. Thirdly, we used single dose of Gd

contrast. However, optimal dose of Gd to maximize the contrast

between tumor and surrounding structure on 3D PDDE was not

determined. Further study is necessary for the optimal dose of Gd.

In conclusion, although the contrast between tumor and

surrounding structures are reduced, Gd enhanced 3D PDDE

provides better demarcation of cranial nerves and major vessels

adjacent to cisternal tumors than Gd enhanced bFFE.
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