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ABSTRACT

  Brain dopaminergic system has various important functions such as attention, 
locomotion, and sensory-motor integration. Although nicotine has a medical problem 
like addiction, it can activate brain dopaminergic system. The present study was con-
ducted to determine the characteristics of nigrostriatal dopaminergic neurons by focus-
ing on the relative contribution of nicotinic and muscarinic receptors and on sensitivity 
to alpha-bungarotoxin in nicotinic receptors. Under urethane anesthesia, the responses 
of nigrostriatal neurons of the male Sprague-Dawley rats to iontophoretically applied 
cholinergic chemicals were recorded. Nigrostriatal neurons showed high basal firing 
frequency. These neurons were more activated following the ejection of nicotine than 
muscarine. The distribution of receptors sensitive to alpha-bungarotoxin was relatively 
high compared to receptors insensitive to alpha-bungarotoxin. These results suggest 
that midbrain SNpc neurons reveal the distinct characteristics in terms of nicotinic re-
ceptors.
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INTRODUCTION

  Dopamine-containing neurons in the rat substan-

tia nigra pars compacta (SNpc) and ventral tegmen-

tal area (VTA) receive moderate to dense inner-

vations from mesopontine cholinergic cells (Bolam 

et el., 1991). The substantia nigra (SN) is located 

lateral to the A10 dopaminergic cell groups and 

contains A9 dopaminergic neurons. Dopaminergic 

cell bodies are located along dorsal part of the 

SNpc. 

  Acetylcholine (ACh) (Jacobowitz and Goldberg, 

1977) and acetylcholine esterase (AChE) activities 

(Kobayashi et al., 1975) are high in both the VTA 
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and SNpc. Localization of acetylcholine in the SNpc 

suggests cholinergic innervation to dopaminergic 

cell bodies. 

  Nicotinic receptors (nAChR), which are pentameric 

ligand-gated ion channels, have been shown to be 

present in the striatum or SN (Zhou et al., 2002; 

Dajas-Bailador and Wonnacott, 2004; Quik, 2004; 

Wonnacott et al., 2005). These nicotinic receptors 

can be activated by striatal dopamine, suggesting a 

close interaction between the nicotinic and dopa-

minergic systems (Salminen et al., 2004; McCallum 

et al., 2005). The cholinergic projection to the SN is 

originated in the pedunculopontine and lateral dor-

sal tegmental nuclei (Grace and Bunney, 1983; 

Clarke et al., 1987; Beninato and Spencer, 1988; 

Lee et al., 1988; Mitchell et al., 1989). Nicotinic 

cholinoreceptors are located on dopaminergic cells 

of the SNpc. Binding site of M1 and M2 muscarinic 

receptor subtypes are present in the SN. The 

muscarinic (M1, M2) and nicotinic receptors exist in 

both the VTA and SN (Clarke and Pert, 1985; 

London et al., 1985; Cortès et al., 1986; Boksa and 

Ouirion, 1987; Nastuk and Graybiel, 1991). 

  In electrophysiological studies, iontophoretically 

ejected ACh increases the firing frequence at do-

paminergic and non-dopaminergic cells in the VTA 

and SNpc (Lichtensteiger et al., 1976; Lichten-

steiger et al., 1982; Waszczak, 1990; Greenfield, 

1991). Systemically and locally injected nicotine 

increases the neuronal firing frequence (Lichten-

steiger et al., 1982; Clarke et al., 1985; Grenhoff et 

al., 1986; Carlson and Foote, 1992). However, the 

specific responsiveness of the SNpc neurons to 

cholinergic agents are still unclear. Therefore, the 

present study was conducted to determine the 

characteristics of nigrostriatal dopaminergic neurons 

by focusing on the relative contribution of nicotine 

and muscarinic receptors and on sensitivity to 

alpha-bungarotoxin in nicotinic receptors.

MATERIALS AND METHODS

Subjects

  Fifty adult male Sprague-Dawley rats weighing 

300±50 g were subjected to the microiontophoretic 

study. Anesthesia was induced by intraperitoneal 

administration of urethane (1.25 g/kg) and mounted 

on a stereotaxic apparatus. Rectal temperature was 

monitored by a thermistor and maintained between 

36.5 and 37.5oC by means of an electrically heated 

blanket. 

Electrophysiological recording from the SNpc

  Microelectrophoretic applications of chemicals with 

calibrated currents were performed using seven- 

barreled glass capillary pipettes (120F, WPI, Sara-

sota, Florida, USA) pulled in two stages with a 

glass micro electrode puller (PE-2, Narishige, Seta-

gaya-ku, Tokyo, Japan). Extracellular single unit 

recordings were made with 7-barrel microionto-

phoretic pipettes with a central recording barrel 

(Lee et al., 1991). The tips of the recording elec-

trodes were broken back under microscope control 

to a 8∼10 mm diameter. The recording barrel was 

filled with a 2 M NaCl solution. Six surrounding 

barrels were used for drug ejections and a current 

balance for current neutralization. Action potentials 

were screened via a differential amplifier (AM502, 

Tektronix, Carrollton, TX, USA) and window discri-

minator (121, WPI, Sarasota, FL, USA), which 

generated square pulses. These pulses were fed to 

AD/DA converter (1401 plus, CED, Cambridge, UK) 

and a personal computer which generated firing 

rate histograms with a software for electrophy-

siology (Spike II, Cambridge Electronic Design, 

Cambridge, U.K.). The side barrels used for drug 

ejection were filled with the following solutions: 0.5 

M nicotine, in 120 mM NaCl, pH 3.5; 5 mM 

muscarin, in 200 mM NaCl, pH 4; 1 mM dihydro- 

beta-erythroidine, in 165 mM Nacl, pH 4.5; 5 nM 

methyllycaconitine, in 165 mM NaCl, pH 4.5. To 

distinguish the nicotinic acetylcholine receptor sub-

type, we used dihydro-beta-erythroidine, a nicotinic 

ACh receptor antagonist (competitive antagonist) 

and methyllycaconitine (noncompetitive antagonist). 

Thus, to determine whether the neurons activated 

by nicotine is sensitive or insensitive to alpha- 

bungarotoxin, dihydro-beta-erythroidine (insensitive: 

Bachem, Torrance, CA, USA) and methyllycaconi-

tine (sensitive: Bachem, Torrance, CA, USA) were 

used. 

  Presumed dopaminergic neurones within the 

SNpc are well established electrophysiological cri-

terial (Grace and Bunney, 1983) including; 1) 

spontanteous firing rate between 5 and 90 spikes 

10 s-1 (occurring sometimes in bursts); 2) triphasic 
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Fig. 1. The location of nigrostriatal neurons in horizon plane. (☆: 

stimulation site, ○: no response, ●: response, ◑: unclear).

Fig. 2. Comparison of two SNpc neurons in terms of different 

conduction velocities.

or biphasic waveforms, with an initial positive de-

flection followed with a prominent negative phase; 

3) long action potential (duration 2∼4 ms); and, 4) 

low pitch sound when monitored by an audio-

amplifier.

  The caudate-putamen (2.2 mm anterior and 1.6 

mm lateral to the bregma, 5.4 mm below the 

cortical surface) was electrically stimulated and the 

evoked potentials were recorded by the electrode 

position area in the SNpc (4.8∼6.2 posterior and 

1.6∼2.0 mm lateral to the bregma, 7.6∼8.2 mm 

below the cortical surface).

Statistics

  Conduction velocity was expressed as the mean± 

SD. The number of SNpc neurons responsive to 

chemicals was counted and analyzed by χ2-test. 

Probability values smaller than 0.05 were con-

sidered significant. 

RESULTS

Identification of nigrostriatal neurons

  To observe the response of SNpc neurons to 

iontophoretically ejected drugs, it is important to 

determine that each neuron projects or not to the 

caudate-putamen. In order classify the SNpc 

neurons, we stimulate the caudate-putamen while 

recording the responses of SNpc neurons to elec-

trical stimulation. Fig. 1 shows the location of SNpc 

neurons recorded. A total of 50 cells were found as 

nigrostriatal neurons. The nigrostriatal SNpc neu-

rons were concentrated in 4.8∼5.6 mm posterior to 

bregma and 1.6∼2.0 mm lateral to the midline. 

Spontaneous firing rate of SNpc neurons was 

41.53±4.85 impulse/sec.

Conduction velocity of nigrostriatal neurons

  In order to determine the conduction velocity of 
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Table 1. Responses of SNpc neurons to iontophoretically administered chemicals

Chemicals Excitatory Inhibitory Biphasic No effect Total

Nicotine (NI) 25  3 2 20 50

Muscarine  4  2 2  7 15

Dihydro-beta-erythroidine (DI)  0  1 0  9 10

Methyllycarconitine (MC)  0  1 9  0 10

NI+DI  7 11 0  6 24

NI+MC  8 17 0  6 31

Fig. 3. The responses of SNpc neu-

rons to iontophoretically ejected chemi-

cals. Ni: Nicotine, Me: Methyllycacon-

itine, Beta: Dihydro-beta-erythroidine.

nigrostriatal neurons, the latency of responses at 

SNpc to electrical stimulation of the caudate- 

putamen was measured and divided by the dis-

tance between stimulating and recording electrodes. 

The conduction velocity of nigrostriatal neurons 

which projects from the SNpc to the caudate- 

putamen could be readily classified into two 

categories showing fast and slow velocities (Fig. 

2). Of 50 cells recorded in the SNpc, the fast 

conduction velocity was 3.30±0.17 m/sec and the 

slow neuronal conduction velocity was 1.10±0.08 

m/sec.

Responses of SNpc neurons to iontophore-

tically ejected drugs

  After the classification of identified nigrostriatal 

neurons, the effect of iontophoretically injected 

drugs was observed. Fig. 3 shows the responses of 

SNpc neurons to microiontophoretically ejected 

chemicals. SNpc neurons which projects to the 

striatum responded to iontophoretically ejected 

nicotine (Fig. 3A). Nicotine was increased the 

responses of SNpc neurons. The responses of 

SNpc neurons to iontophoretically ejected nicotine 

were current-dependent. The increased responses 

of SNpc neurons to nicotine were current-depen-

dently inhibited by methyllycaconitine. Fig. 3B shows 

the neuronal responses to the iontophoretically 

ejected nicotine and dihydro-beta-erythroidine. Dihy-

dro-beta-erythroidine also reduced the neuronal re-

sponses to nicotine current-dependently. 

  Table 1 summarizes the responsiveness of SNpc 

neurons to iontophoretically administered chemicals. 

The identified nigrostriatal neurons were responded 

to iontophoretically ejected nicotine with increased 

responses. The neurones were more activated by 
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nicotine than muscarine. Thus nigrostriatal neurons 

were much more sensitive to nicotine than mus-

carine. 

  To determine whether the neurons activated by 

nicotine is sensitive or insensitive to alpha-bungaro-

toxin, we observated the neuronal response to 

iontophoretically ejected methyllycaconitine and di-

hydro-beta-erythroidine. The results suggest that the 

neurons showed biphagical effects to methyllyca-

conitine alone but no effects to dihydro-beta-ery-

throidine alone (χ2=18, p＜.001). When nicotine 

and its antagonist were concurrently ejected, the 

excitatory effect of nicotine was inhibited. In 11 of 

24 nigrostriatal neurons (46%), the nicotinic excita-

tory effect was reduced by concurrently ejected di-

hydro-beta-erythroidine. In 17 of 31 neurons (55%), 

methyllycaconitine inhibited the excitatory effect of 

nicotine. However, the difference between inhibitory 

effects of both dihydro-beta-erythroidine and methy-

llycaconitine was not statistically different (χ2= 

0.469, p＞.05). 

DISCUSSION

  There have been many studies on the effect of 

nicotine on midbrain dopaminergic neurons in rats. 

When the nicotine is locally injected in the VTA or 

SNpc, the efflux of dopamine is increased in the 

dopaminergic projection areas such as the nucleus 

accumbens and striatum (Blaha and Winn, 1993; 

Nisell et al., 1994). Our research observed the 

relative involvement of the nicotinic and muscarinic 

receptors in mesoaccumbens dopaminergic and 

nigrostriatal dopaminergic system neurons. Nicotine 

produces more excitatory responses than muscarin. 

Therefore, nigrostriatal neurons more sensitively 

respond to nicotine than muscarin. It has been 

shown that the dopaminergic neurons in the SNpc 

have muscarinic receptor mRNA (Vilaro et al.,1990) 

but the concentration of the muscarinic receptors is 

very low (Reisine et al., 1979; Cross and Waddington, 

1980; Mash and Potter, 1986). The SNpc neurons 

show high firing frequency, and also excitatory 

responses to nicotine. Therefore, SNpc neurons are 

composed of the relatively high frequency and 

nicotine-sensitive neurons. Our results showed the 

current-dependent response to iontophoreticaly e-

jected nicotine. Similarly, the excitatory response to 

i.v. injected nicotine was dose-dependent (Armitage 

et al., 1968; Engberg and Svensson, 1980; Sven-

sson and Engberg, 1980). 

  To investigate whether the nicotinic receptors of 

SNpc neurons are sensitive or insensitive to alpha- 

bungarotoxin, the neuronal response was observed 

during iontophoretical ejection of the methyllyca-

conitine or dihydro-beta-erythroidin. There was no 

particular response to iontophoretic ejection of dihy-

dro-beta-erythroidine and methyllycaconitine alone 

in the SNpc. However the nicotine induced excita-

tory response in nigrostriatal neurons was reduced 

by iontophoretically ejected nicotinic antagonist, di-

hydro-beta-erythroidine and methyllycaconitine. 

  The results of the sensitivity to alpha-bungaro-

toxin in midbrain dopaminergic neurons show that 

the distribution of receptors sensitive to alpha-bun-

garotoxin was relatively high compared to receptors 

insensitive to alpha-bungarotoxin. Alpha-bungaroto-

xin inhibits the nicotine activity in cerebellar inhi-

bitory interneurons, but not showed specific selec-

tive inhibitory effect to nicotine in Purkinje neurons 

(Graza et al., 1987). Also alpha-bungarotoxin could 

not inhibit nicotinic and acetylcholinergic activity to 

various ganglionic preparation (Brown and Fuma-

galli, 1977; Bursztajn and Gershon, 1977). These 

results imply that the nicotinic receptor subtypes are 

different at different areas of the brain. Therefore, 

the nicotinic receptors of dopaminergic neurons in 

the midbrain may have different characteristics com-

pared as the nicotinic receptors of the other brain 

area neurons. 

  Smoking is associated with a decreased incidence 

in some neurological diseases (Checkoway and 

Nelson 1999; Gorell et al., 1999; Allam et al., 2004; 

Quik, 2004). Accumulating studies suggest that 

nicotine may be a candidate that mediates this 

apparent neuroprotection (O'Neill et al., 2002; Quik, 

2004). Particularly, smokers have lower parkinson's 

disease rate than nonsmokers because of the pro-

tective effect of nicotine (Baumann et al., 1980; 

Baron, 1986; Morens et al., 1995). Parkinsonean 

patients at early stage showed reduced symptoms 

to tremor, rigidity, bradykinesia and gait distur-

bances during about 10 to 30 minute of smoking. 

therefore, the nicotine may have an positive effect 

for treatment of parkinson's disease (Ishikawa and 

Miyatake, 1993), schizophrenia (Alder et al., 1992, 
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1993) and attention deficit hyperactivity disorder 

(ADHD: Barkley et al., 1990; Pomerleau et al., 

1996). 

  Therefore, nicotine and nicotinic agents may have 

a useful effect for various diseases such as Alzhei-

mer's disease, Parkinson's disease, schizophrenia, 

ADHD. These effects may be mediated by brain 

dopaminergic system. Thus, the further systematic 

research is needed for the investigation of the 

effects at nicotine on brain dopaminergic system. 

The development of nicotine delivery system such 

as local injection or skin patch may reduce the 

misuse of nicotine and the risk of health problem 

and also could suggest more effective treatment 

with reduction of the side effect of nicotine by 

systemic injection.
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