Neoplasms and tumorlike lesions that originate from chest wall tissues are uncommon compared with tumors in other parts of the body, and unfamiliarity with these disease entities can cause diagnostic difficulties for radiologists. Furthermore, the imaging features of many of these tumors are nonspecific, particularly those that are locally aggressive. However, a systematic approach based on patient age, clinical history, lesion location, and characteristic imaging findings often helps limit the differential diagnosis. Primary chest wall tumors can be classified as bone or soft-tissue tumors, with the latter being further classified into adipocytic tumors, vascular tumors, peripheral nerve sheath tumors, cutaneous lesions, fibroblastic-myofibroblastic tumors, and so-called fibrohistiocytic tumors, largely based on the 2002 World Health Organization classification. Within each category, it is possible to further limit the differential diagnosis with cross-sectional imaging. Information on specific features (eg, mineralization, fibrosis, hemosiderin deposits) and imaging patterns (eg, the “target sign” and “fascicular sign” seen in neurogenic tumors) can aid in making the diagnosis. Radiologists can achieve a sufficiently specific diagnosis of bone tumors and soft-tissue tumors if typical findings are present.
Introduction
Tumors that arise from the chest wall (including bone structures such as the sternum, clavicle, scapula, and ribs) or from adjacent soft tissues are less common than are tumors in other parts of the body (1,2). The resulting unfamiliarity can make it difficult for radiologists to limit the number of possible diagnoses. Furthermore, although some primary tumors of the chest wall demonstrate characteristic imaging features, many such tumors have nonspecific characteristics.

Lesions must be categorized to provide a meaningful, practical diagnostic approach, but any categorization of the diverse tumorous conditions that affect the chest wall is arbitrary. Nevertheless, we believe that classic categorizations on the basis of tumor origin and tissue components are helpful. Accordingly, we characterize primary chest wall tumors as either bone tumors or soft-tissue tumors. We subdivide bone tumors into malignant and benign lesions, and soft-tissue tumors (which are more varied) into six categories, four of which—adipocytic tumors, vascular tumors, fibroblastic-myofibroblastic tumors, and so-called fibrohistiocytic tumors—appear in the 2002 World Health Organization (WHO) classification system for soft-tissue tumors (3). Our fifth and sixth categories, peripheral nerve sheath tumors (PNSTs) and cutaneous lesions, are not included in the WHO classification system for soft-tissue tumors but were adopted because it is possible to limit the differential diagnosis of these lesions on the basis of (a) characteristic imaging findings or (b) tissue layer of origin. The WHO classification system actually categorizes soft-tissue tumors into nine different groups. The five groups in the WHO classification system that we did not use—smooth muscle tumors, pericytic tumors, skeletal muscle tumors, chondro-osseous tumors, and tumors of uncertain differentiation—often do not demonstrate specific imaging features or occur only very rarely on the chest wall, and they are not discussed in this article.

Instead, we discuss the radiologic, pathologic, and clinical features—which are important for limiting the differential diagnosis—of lesions that more commonly involve the chest wall or that have relatively characteristic imaging features at magnetic resonance (MR) imaging or computed tomography (CT).

Approach to Chest Wall Tumors
Irrespective of whether chest wall tumors arise from bone or soft tissue, many tumor entities largely exhibit nonspecific imaging features. However, substantial numbers of primary bone and soft-tissue tumors of the chest wall can be specifically diagnosed. The following criteria can aid in limiting the differential diagnosis of chest wall tumors: (a) overall prevalence and characteristic clinical features, (b) mineralization patterns (if any), (c) location at the chest wall, and (d) intrinsic MR imaging characteristics that correspond with histopathologic findings. As a diagnostic aid, we have summarized the key clinical, radiologic, and pathologic features of these lesions in Tables 1 and 2. A bulky mass invading adjacent structures but demonstrating neither specific signal intensity characteristics at MR imaging nor mineralization usually raises suspicion for a malignant bone or soft-tissue tumor, such as metastasis or sarcoma. However, when mineralization is present within a bulky mass, osteosarcoma and chondrosarcoma should be suspected. Benign bone tumors, which typically do not demonstrate extraosseous mass formation, may have imaging features that are specific enough to allow a pathologic diagnosis. These tumors include fibrous dysplasia (amorphous mineralization), osteochondroma (continuity of the medullary cavity between the lesion and affected bone), and enchondroma (benign osteolytic lesion with chondroid calcification). The following benign soft-tissue tumors have a distinct imaging appearance: lipoma (mature fat tissue on T1-weighted MR images), hemangioma (high signal intensity on T2-weighted images, a variable amount of fat tissue on T1-weighted images, and a phlebolith on CT scans), neurogenic tumor (“target sign” and “fascicular sign” on T2-weighted images), epidermal cyst (no high signal intensity on T2-weighted images), pilomatrixoma (a calcified subdermal nodule with peritumoral edema on MR images), and elastofibroma (a fibrous mass located under the serratus anterior or latissimus dorsi muscle).

Bone Tumors
Metastatic bone tumors—including skeletal tumors of the chest wall—are the most commonly encountered type of skeletal tumor, particularly in older patients (4). On the other hand, primary bone tumors of the chest wall are uncommon, accounting for only 5%–8% of all skeletal masses (5). Furthermore, approximately 95% of these primary bone tumors are located in ribs, with most of the remainder in the sternum (6). In this article, we consider the ribs, sternum, scapula, and clavicle to be bones of the chest wall. It should be remembered that sternal tumors are usually malignant, whereas rib lesions have an equal likelihood of benignancy or malignancy (7).
<table>
<thead>
<tr>
<th>Tumor</th>
<th>Frequency, Patient Age,‡ Mineralization</th>
<th>Signal Intensity† at T1-weighted MR Imaging</th>
<th>Signal Intensity† at T2-weighted MR Imaging</th>
<th>Notable MR Imaging Feature or Typical Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malignant Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Myeloma</td>
<td>Common, ≥50 y, rare</td>
<td>Iso- to hypointense</td>
<td>Hyperintense</td>
<td>Nonspecific</td>
</tr>
<tr>
<td>Chondrosarcoma</td>
<td>Common, ≥50 y, chondroid (predilection for periphery)</td>
<td>Hypointense in area of mineralization against an iso- to hypointense background due to cartilage</td>
<td>Hypointense in area of mineralization against a bright background due to cartilage</td>
<td>Most frequently involves upper five ribs and the anterior chest wall</td>
</tr>
<tr>
<td>Osteosarcoma</td>
<td>Rare, ≤20 y, osteoid (predilection for center)</td>
<td>Hypointense in area of mineralization, sometimes hyperintense due to mineralization or hemorrhage</td>
<td>Variably intense, hypointense in area of mineralization</td>
<td>Costochondral junction</td>
</tr>
<tr>
<td>Parosteal osteosarcoma</td>
<td>Rare, 20–30 y, dense calcification</td>
<td>Hypointense due to dense mineralization</td>
<td>Hypointense due to dense mineralization</td>
<td>Mainly extraosseous with minimal (if any) medullary involvement</td>
</tr>
<tr>
<td>Ewing sarcoma</td>
<td>Rare, 0–20 y, rare</td>
<td>Hyperintense in area of hemorrhage</td>
<td>Heterogeneously hyperintense</td>
<td>Intense enhancement</td>
</tr>
<tr>
<td>Benign Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibrous dysplasia</td>
<td>Common, 20–30 y, ground glass–like, amorphous</td>
<td>Iso- to hypointense</td>
<td>Variably intense due to various pathologic components</td>
<td>Expansile, no extraosseous mass; posterior arc of rib</td>
</tr>
<tr>
<td>Enchondroma</td>
<td>Uncommon, 20–40 y, chondroid</td>
<td>Hypointense in area of mineralization, sometimes hyperintense due to mineralization or hemorrhage</td>
<td>Variably intense, hypointense in area of mineralization</td>
<td>Septal and peripheral enhancement; costochondral junction</td>
</tr>
<tr>
<td>Osteochondroma</td>
<td>Uncommon, 10–40 y, occasionally seen at cartilage cap</td>
<td>Isointense‡</td>
<td>Hyperintense cartilage cap</td>
<td>Continuity with medullary cavity of affected bone; costochondral junction</td>
</tr>
<tr>
<td>Chondroblastoma</td>
<td>Rare, 10–20 y (patients with rib lesions are older), chondroid (25%–50%)</td>
<td>Hypointense in area of mineralization against an iso- to hypointense background due to cartilage</td>
<td>Hypointense in area of mineralization against a bright background due to cartilage</td>
<td>ABC change, edema of adjacent bone and soft tissue</td>
</tr>
<tr>
<td>ABC</td>
<td>Uncommon, 20–40 y, almost never seen</td>
<td>Heterogeneously intense due to hemorrhage</td>
<td>Heterogeneously intense due to hemorrhage</td>
<td>Fluid level</td>
</tr>
<tr>
<td>GCT</td>
<td>Uncommon, 20–40 y, almost never seen</td>
<td>Iso- to hypointense</td>
<td>Heterogeneously intense, hypointense due to hemosiderin or fibrosis</td>
<td>Fluid-fluid level in ABC change</td>
</tr>
</tbody>
</table>

Note.—ABC = aneurysmal bone cyst, GCT = giant cell tumor.
*Age at which tumor is most frequently recognized. †Relative to muscle. ‡Relative to medullary cavity of affected bone, except for the cartilage cap, which is isointense relative to muscle.
Chondrosarcoma is the most common primary malignant bone tumor of the chest wall and accounts for 33% of all primary rib tumors, with myeloma being the second most common. Ewing sarcoma is the most common primary bone tumor in children (1,8–10). Fibrous dysplasia is the most common benign tumorous condition of the osseous chest wall, accounting for approximately 30% of these tumors (11).

Malignant Bone Tumors

Traditionally, bone tumors that demonstrate extensive cortical destruction and extraosseous soft-tissue mass formation have been categorized as malignant. Bone destruction is better depicted with CT, whereas extraosseous mass formation is better visualized at MR imaging. When a malignant bone tumor does not have any specific imaging features and demonstrates only the typical features of a malignant lesion, limiting the differential diagnosis is difficult. The imaging features that aid in limiting the differential diagnosis of primary malignant tumors are described in the remainder of this section, with a focus on mineralization and signal intensity characteristics at MR imaging.

Mineralization in the matrix of a presumably malignant tumor is useful diagnostic information, making CT an important diagnostic tool. When mineralization shows typical chondroid features, such as an arc-and-ring appearance, flocculence, or a stippled shape, chondrosarcoma should be considered. The pattern of mineralization in chondrosarcoma has been described as nodular and peripheral (Fig 1) (12,13). On the other...
Table 2 (continued)

<table>
<thead>
<tr>
<th>Tumor</th>
<th>Frequency, Patient Age,⁎ Mineralization</th>
<th>Signal Intensity† at T1-weighted MR Imaging</th>
<th>Signal Intensity† at T2-weighted MR Imaging</th>
<th>Notable MR Imaging Feature or Typical Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cutaneous Lesions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Epidermal inclusion cyst</td>
<td>Common, any age, may be present</td>
<td>Variable, occasionally hyperintense due to calcification</td>
<td>Variable (not bright, even though a cyst)</td>
<td>Peripheral enhancement at the wall, subdermal location</td>
</tr>
<tr>
<td>Pilomatricoma</td>
<td>Common, 0–20 y (40%); peak, 10–15 y, typically central (80%)</td>
<td>Homogeneously isointense</td>
<td>Heterogeneous and variable</td>
<td>Peripheral enhancement at the capsule, subdermal location</td>
</tr>
<tr>
<td>DFSP</td>
<td>Uncommon, 20–40 y, no calcification</td>
<td>Hypointense</td>
<td>Hyperintense§</td>
<td>Confined to subdermal location (if small)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fibroblastic-Myofibroblastic Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elastofibroma</td>
<td>Common, 50–60 y, no calcification</td>
<td>Isointense with interspersed fat streak</td>
<td>Isointense with interspersed fat streak</td>
<td>Bilateral (10%–66%), near the lower tip of the scapula</td>
</tr>
<tr>
<td>Fibromatosis</td>
<td>Common, 10–40 y; peak, 25–35 y, no calcification</td>
<td>Hypointense due to fibrous streak suggesting fibrosis and a myxoid component</td>
<td>Heterogeneous and hypointense due to fibrous streak suggesting fibrosis and a myxoid component</td>
<td>Infiltrating margin, heterogeneous enhancement</td>
</tr>
<tr>
<td>So-called Fibrohistiocytic Tumors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UPS</td>
<td>Uncommon, ≥40 y, unusual</td>
<td>Isointense</td>
<td>Iso- to hyperintense§</td>
<td>Heterogeneous enhancement</td>
</tr>
</tbody>
</table>

Note.—DFSP = dermatofibrosarcoma protuberans, PNST = peripheral nerve sheath tumor, UPS = undifferentiated pleomorphic sarcoma. ⁎Age at which tumor is most frequently recognized. †Relative to muscle. ‡Substantial overlap between the target sign and the fascicular sign. §Relative to fat.

Figure 1. Chondrosarcoma in a 36-year-old woman. (a) Contrast material–enhanced CT scan obtained at the level of the diaphragm shows a rib mass with chondroid calcifications and extensive extrasosseous mass formation. (b) Photograph of the cut surface of the excised specimen shows a mass (maximum diameter, ~10 cm) consisting of glistening, whitish, lobular calcified cartilage (arrows), which corresponds to the calcifications seen at CT. The mass is seen invading adjacent tissue (arrowheads).
signal voids with all MR pulse sequences, irrespective of disease. In osteosarcoma, mineralized portions of tumors have low signal intensity on T1- and T2-weighted images, whereas nonmineralized areas and soft-tissue tumors have high signal intensity on T2-weighted images (17).

Benign Bone Tumors

The three most frequently encountered benign chest wall lesions are fibrous dysplasia, osteochondroma, and enchondroma (18), whereas chondroblastoma, aneurysmal bone cyst (ABC), and giant cell tumor (GCT) are rare.

Fibrous Dysplasia.—Fibrous dysplasia is a developmental anomaly in which osteoblasts fail to undergo normal morphologic differentiation and maturation, leading to the replacement of normal marrow and cancellous bone by immature bone and fibrous stroma. Approximately 6%–20% of cases of monostotic fibrous dysplasia develop in the ribs, with 55% of cases of polyostotic fibrous
Figure 3. Parosteal osteosarcoma in a 41-year-old man. (a) Contrast-enhanced CT scan obtained at the midscapula level shows a mass (maximum diameter, ~7 cm) surrounding the scapula from both ventral and dorsal aspects. The mass is densely mineralized, and its mineralized portion (arrow) crosses the medullary cavity of the scapula, a finding that suggests medullary involvement. (b) Axial T2-weighted MR image (3200/98) obtained at the same level shows the mass (arrows) as a hypointense region, reflecting dense calcification. (c) Photograph of the cut surface of the excised specimen shows a compactly mineralized extraosseous tumor (arrowheads) with partial involvement of the medullary cavity.

Figure 4. Fibrous dysplasia of a rib in a 17-year-old boy. (a) Noncontrast CT scan obtained at the level of the second rib shows a mass with expansile remodeling of a protracted length of bone. Trabeculation is seen at the periphery (arrowheads), but mineralization was not observed. (b) On a coronal T2-weighted MR image (4500/120), the tumor (arrowheads) demonstrates heterogeneous signal intensity. (c) Photomicrograph (original magnification, ×100; hematoxylin-eosin [H-E] stain) shows tissue with fibrous proliferation and osteoid formation, but without osteoblastic rimming (arrowheads).

Fibrous dysplasia is the most common cause of an osteolytic lesion by a benign tumor or tumor-like lesion arising from the bone of the chest wall. It typically arises in the lateral or posterior arc of a rib (18), and at imaging, it shows expansile remodeling of a protracted length of bone. At CT, the fibrous dysplasia matrix may appear purely osteolytic or demonstrate peripheral trabeculation (Fig 4) or mineralization. Fibrous dysplasia mineralization can appear amorphous, which represents woven bone formation and creates the typical ground-glass appearance described at radiography. Furthermore, fibrous dysplasia can contain cartilage nodules, which may demonstrate typical cartilaginous mineralization (12). At MR imaging, various tissue components affect the
signal intensity characteristics of fibrous dysplasia. Generally, fibrous dysplasia has signal intensities ranging from low to high on T2-weighted images (Fig 4b), although in the majority of cases it has high signal intensity (20).

Osteochondroma.—Osteochondroma is a hamartomatous, cartilage-capped osseous growth that projects from the surface of the affected bone. Although one large series reported that solitary osteochondromas account for about 35%–41% of all benign bone tumors throughout the body (21), solitary osteochondromas involving a chest wall bone (rib, sternum, scapula, or clavicle) are relatively uncommon. In fact, only 8% of all rib tumors are osteochondromas (22), and in the ribs, osteochondromas show a predilection for the costochondral junction (23). When a solitary osteochondroma arises at the ventral side of the scapula, it sometimes causes pain related to bursa formation (Fig 5) (24). CT and MR imaging can both reveal continuity of the marrow cavity between the lesion and affected bone, the hallmark of osteochondroma. However, MR imaging is the most accurate technique for demonstrating a cartilage cap and for evaluating changes in involved adjacent structures. Cartilage caps have high signal intensity on T2-weighted images, as do the

Figure 5. Osteochondroma of the scapula that resulted in scapulothoracic bursitis in an 18-year-old man. (a) Coronal fat-suppressed T2-weighted MR image (5000/120) of the right posterolateral side of the chest wall reveals osteocartilaginous exostosis (short arrow). Note the extensive scapulothoracic bursitis (long arrows) adjacent to the lesion, which was speculated to have resulted from irritation by the osteochondroma. (b) Coronal fat-suppressed T2-weighted MR image (5000/120) shows the lesion with a thin, hyperintense cartilage cap (arrowheads), along with scapulothoracic bursitis (arrows). (c) Photograph of the cut surface of the excised specimen shows the cartilage cap (arrowheads).

Figure 6. Enchondroma of a rib in a 25-year-old woman. (a) Contrast-enhanced CT scan shows a rib mass with cortical expansion at the costochondral junction. Note the punctate calcification (arrowhead), suggesting a chondroid matrix. \(P \) = pancreas. (b) Photograph of the cut surface of the excised specimen prepared for microscopic examination (H-E stain) shows a cartilage matrix (arrow). Cystic space (C) that remained after decalcification corresponds to the calcification seen at CT.
cartilaginous tissues of other tumors (23), and cartilage cap thickness is an important indicator of osteochondroma-to-sarcoma transformation. If the thickness of a cartilage cap exceeds 2 cm in adults or 3 cm in children, malignant transformation should be suspected (25).

Enchondroma.—Incarbone and Pastorino (18) reported enchondroma to be the second most common benign rib tumor after fibrous dysplasia. Enchondroma usually arises from cartilaginous tissue at the costochondral junction (18). CT reveals a slow-growing, lobulated, well-demarcated osteolytic lesion with or without bulging of cortical bone (Fig 6). Not all enchondromas demonstrate calcification at CT, and when calcification is not seen in the matrix, MR imaging is helpful. The high water content of hyaline cartilage produces high signal intensity on T2-weighted images, and the additional presence of a lobulated contour strongly suggests the possibility of enchondroma. However, enchondroma is generally considered to occur only rarely on the chest wall (7,26); chondrosarcoma is much more common. Hence, a destructive osseous lesion of the chest wall is initially suspected by the radiologist to be chondrosarcoma when mineralization is present (27).

Chondroblastoma.—Chondroblastoma, which is usually found in the epiphyseal regions of long bones, can occur at the chest wall and involve the ribs or scapulæ. Furthermore, whereas chondroblastoma of the long bones is most commonly encountered in the 2nd decade of life, chondroblastoma of the rib is normally encountered substantially later (28). Chondroblastoma typically arises at an ossification center, and therefore occurs at the costovertebral or costochondral junction (28). The imaging features of chondroblastoma can be aggressive and show ABC change, and it is sometimes difficult to exclude a malignant bone tumor. In addition, edema of adjacent bone marrow and soft tissue can be prominent.

Aneurysmal Bone Cyst.—ABCs can occur due to a secondary change of another bone tumor, but they can also occur as primary tumors. Most primary ABCs occur in patients under 30 years of age. At gross examination, masses are seen to contain a network of blood-filled cysts that histologic analysis shows to be lined with fibroblasts and multinucleated giant cells. Typically, MR imaging reflects the morphologic features of the tumor at gross examination and shows a lobulated or septated mass with a thin, well-defined rim of low signal intensity (29). Fluid levels are commonly seen within ABCs, indicating hemorrhage (Fig 7), but also occur in other tumors showing secondary ABC change; consequently, the presence of a fluid level is not pathognomonic (30).

Giant Cell Tumor.—GCTs are benign lesions composed of vascular sinuses lined or filled with abundant spindle and giant cells, and they tend
to occur during the 3rd or 4th decade of life. GCTs of the chest wall often arise in the subchondral regions of flat and tubular bones, such as the sternum, clavicle, and ribs (23). They typically have low to intermediate signal intensity on T1- and T2-weighted MR images. However, one investigator stressed that they can have low signal intensity on these images, a finding that may reflect dense collagen and hemosiderin deposits within the tumor (Fig 8) (31,32). ABC changes are also common in GCTs.

Langerhans Cell Histiocytosis.—Generally, Langerhans cell histiocytosis involves the osseous chest wall and is seen in patients under 20 years of age. Solitary involvement of a rib is known to account for approximately 9.2%–15% of eosinophilic granulomas, which represent the mildest subtype of Langerhans cell histiocytosis. CT and MR imaging findings are nonspecific, but perilesional edema can be profound, especially in the early phase (33).

Soft-Tissue Tumors

In adults, the most common benign soft-tissue neoplasm is lipoma, and the most common malignant neoplasm is undifferentiated pleomorphic sarcoma (UPS), a term that is used interchangeably with malignant fibrous histiocytoma. In children, rhabdomyosarcoma and primitive neuroectodermal tumor (Askin tumor) are the most common malignant soft-tissue tumors (26). Many soft-tissue neoplasms share similar characteristics.
Figure 9. Well-differentiated liposarcoma in a 51-year-old man. (a) Axial T1-weighted MR image (550/9) of the left chest wall shows a mass (maximum diameter, ~7.5 cm) superficial to the rib cage. The mass is well defined but shows marginal invasion of adjacent muscle and of the rib cage (arrowheads). Most of the tumor has high signal intensity. However, a nonfat component (arrow) is also seen, suggesting the presence of a malignant component. (b) Axial gadolinium-enhanced fat-suppressed T1-weighted MR image (550/9) shows diffuse streaky and nodular enhancement of the nonfat region of the tumor (arrowhead). (c) Photomicrograph (original magnification, ×200; H-E stain) reveals fat vacuoles that vary greatly in size. Note the adipocytic nuclear atypia (arrowheads) within the collagenous stroma and the relatively high density of vessels, findings that are believed to have caused the prominent enhancement seen on gadolinium-enhanced T1-weighted MR images (cf b).

at cross-sectional imaging, and the differentiation of sarcoma types frequently requires biopsy (7,26).

Adipocytic Tumors

Fatty tumors of the chest wall are relatively common, and although conventional lipoma is by far the most frequently encountered fatty soft-tissue tumor, there are a number of variants. In this article, however, we focus only on conventional lipoma and well-differentiated liposarcoma.

Lipoma.—Lipoma, the most common soft-tissue tumor, is most frequently observed in patients over 50 years of age. All lipomas are composed of adipose tissue, but various types of nonadipose tissue, such as connective tissue septa and calcification, are present in one-third of these tumors (34,35). On gadolinium-enhanced MR images, lipomas typically do not enhance. However, septa less than 2 mm in thickness are often visible and may enhance mildly (34,35). Furthermore, many lipomas of the chest wall are deep seated and involve deep intermuscular or muscular layers (34,35).

Liposarcoma.—Liposarcoma is the second most common subtype of chest wall soft-tissue malignancy after UPS (36). The WHO identifies five basic pathologic subtypes—well-differentiated, dedifferentiated, myxoid, pleomorphic, and mixed—and imaging findings of liposarcomas depend on the subtype (7). Well-differentiated liposarcoma is the most common subtype, accounting for approximately 50% of lesions (37). The WHO classification system treats atypical lipomatous tumor and well-differentiated liposarcoma as identical, since they share the same morphologic features, karyotype, and biologic behavior.

Typically, well-differentiated liposarcoma appears as a predominantly fatty lesion, with 50%–75% of tumor volume demonstrating fat signal intensity, and the MR imaging features of well-differentiated liposarcoma are frequently characteristic. Well-differentiated liposarcoma has been reported to have characteristic MR imaging features in 91%–96% of cases but to appear similar to lipoma in 4%–9% of cases (37). MR imaging features that suggest well-differentiated liposarcoma rather than lipoma include the presence of (a) prominent internal septa greater than 2 mm in thickness, and (b) nodular nonadipose areas (35). The gadolinium enhancement of nonadipose regions is variable (Fig 9) and has been described as ranging from mild to marked (35); however, one research group reported that the thick, irregular septa of liposarcomas enhance significantly in most cases, whereas thin septa enhance only faintly (38). Other histologic types
lesions with high numbers of normal- or abnormal-appearing vessels. At pathologic analysis, hemangiomas can be subclassified according to the predominant type of vascular channel (capillary, cavernous, arteriovenous, or venous) present within the lesion (40). However, subclassification is frequently difficult due to admixtures of histologic components. Hemangiomas also commonly manifest with nonvascular elements, which include fat, smooth muscle, thrombus, fibrous tissue, and hemosiderin. Phleboliths (dystrophic calcifications of thrombi) are most frequently observed in cavernous hemangiomas but can also be present in other vascular lesions (41). One CT study found that 30% of cavernous hemangiomas contain a phlebolith (42). At T1- and T2-weighted imaging, hemangiomas typically demonstrate regions of high signal intensity representing vascular tissue intermixed with variable (and sometimes substantial) amounts of fat (Fig 10) (7).

Figure 10. Capillary hemangioma in a 34-year-old woman. (a) Axial T1-weighted MR image (600/9) of the left chest wall shows a mass (maximum diameter, ~12 cm) superficial to the rib cage. Arrowhead indicates high-signal-intensity foci at the periphery of the mass, suggesting the presence of intermingled fat tissue. (b) Axial fat-suppressed T2-weighted MR image (5000/120) shows the mass with high signal intensity and internal septa. (c) Photomicrograph (original magnification, ×40; H-E stain) demonstrates numerous vascular spaces filled with blood cells. Note the fat tissues (arrows), which can appear hyperintense on T1-weighted images (cf a).

Vascular Tumors
Vascular tumors include benign tumors (eg, hemangioma, lymphangioma), tumors showing intermediate biologic behavior (eg, hemangiendothelioma), and malignant tumors (eg, angiosarcoma).

Hemangioma.—Hemangiomas are occasionally found in the soft tissue of the chest wall. Here, we use the term hemangioma in its broadest sense. Furthermore, we agree with other authors that these lesions represent benign nonreactive
Lymphangioma.—Lymphangioma is a congenital lesion that consists of dilated lymphatic vessels and is commonly encountered in the neck and axilla, although it is most commonly found at the cervicothoracic junction in children and in the mediastinum in adults (7). Lesions are usually present at birth (50%–65% of cases) and nearly always by 2 years of age (90%) (40). Lymphangioma typically has low signal intensity similar to or less than that of muscle on T1-weighted MR images but high signal intensity greater than that of fat on T2-weighted images. There is thin peripheral and septal enhancement following gadolinium administration (Fig 11) (40).

Intermediate and Malignant Vascular Tumors.—Angiosarcoma is the most aggressive type of soft-tissue tumor arising from vascular tissue, and it usually affects adults. Chronic lymphedema is well known to predispose to angiosarcoma, although only approximately 10% of lesions demonstrate this association. The vast majority of angiosarcomas associated with lymphedema are found in postmastectomy patients (40). The imaging features of malignant vascular tumors (angiosarcomas and Kaposi sarcomas) and those of vascular tumors of intermediate aggressiveness (hemangioendotheliomas and hemangiopericytomas) are dependent on lesion location (ie, superficial or deep). Most superficial aggressive vascular tumors are Kaposi sarcomas or angiosarcomas, and cross-sectional imaging reveals skin thickening and subcutaneous edema with an associated focal soft-tissue mass. On the other hand, deep-seated malignant vascular tumors or vascular tumors of intermediate aggressiveness are usually hemangioendotheliomas, hemangiopericytomas, or angiosarcomas, any of which may have the nonspecific imaging appearance of a solid mass (40).

Peripheral Nerve Sheath Tumors
Neurogenic tumors of the chest wall arise from spinal nerve roots, intercostal nerves, and (sometimes) distal brachial plexus branches. The benign group includes schwannomas and neurofibromas; malignant PNSTs, a malignant counterpart of these benign tumors, can also occur at the chest wall. The imaging features of these tumors are identical to those of similar tumors in other locations.

Schwannoma.—Schwannomas typically occur in patients between 20 and 50 years of age. They are almost invariably slow-growing nonaggressive neoplasms and usually manifest clinically as a painless mass (often <5 cm) without neurologic symptoms (43). Antoni A and Antoni B regions (Antoni A is a more organized hypercellular region composed of spindle cells, whereas Antoni B is a less organized hypocellular region demonstrating myxoid components) are the histologic hallmarks of schwannoma. Large schwannomas commonly undergo degenerative changes and demonstrate cyst formation, hemorrhage, calcification, and fibrosis. These features are far less common in neurofibroma (43).

Neurofibroma.—Neurofibromas most commonly develop in patients between 20 and 30 years of age and may demonstrate a localized, diffuse, or plexiform pattern. The localized type is by far the most common, representing approximately 90% of lesions, with the vast majority being solitary and not associated with neurofibromatosis type I. The diffuse type is associated with a plaquelike elevation of the skin and thickening of the entire
subcutis. Plexiform neurofibromas diffusely involve long segments of a nerve and its branches and have a “bag of worms” appearance. The histologic appearance of solitary localized neurofibroma differs markedly from that of schwannoma. Neurofibromas do not contain Antoni A or Antoni B regions, and degenerative regions are not as prominent as in schwannomas (43). Furthermore, unlike schwannomas, neurofibromas are intimately intermixed and inseparable from affected nerve tissues, so that complete excision requires sacrifice of the affected nerve (44). Consequently, differentiation between these two entities is crucial, particularly when lesions are deep seated and involve nerves whose resection would cause severe functional compromise.

Imaging Features of Schwannoma vs Neurofibroma.—MR imaging has been proposed for the differential diagnosis of PNSTs. The classic target sign seen at T2-weighted imaging consists of relatively low signal intensity at the center of a lesion together with high signal intensity at the periphery. Typically, the central low-signal-intensity region enhances on gadolinium-enhanced MR images, whereas the peripheral high-signal-intensity region does not (Fig 12). These MR imaging features correspond to pathologic findings of fibrovascular tissue (with high collagen content) centrally and more myxoid tissue peripherally (45). The target sign has been reported to be present at T2-weighted imaging in 50%–70% of neurofibromas and 0%–54% of schwannomas (45–47). Furthermore, the target sign on T2-weighted images and central enhancement on gadolinium-enhanced T1-weighted images have been reported to favor a diagnosis of neurofibroma (63% of cases) rather than schwannoma (3%) (46). In addition, the fascicular sign is seen at T2-weighted imaging and consists of heterogeneous low signal intensity with a ringlike pattern (Fig 13). One study reported that the fascicular sign was present in 63% of schwannomas and 25% of neurofibromas (47). However, there is considerable overlap between the imaging features of these two disease entities.

Malignant PNST.—Malignant PNSTs account for 5%–10% of all soft-tissue sarcomas and affect adults between 20 and 50 years of age. They are associated with neurofibromatosis type I in 25%–70% of cases and show a distinct propensity for affecting major or medium-sized nerves, including the sciatic nerve and the brachial and sacral plexuses. Differentiation between a malignant PNST and a benign neurogenic tumor is not difficult when the tumor is sufficiently large and infiltrative (Fig 14). However, it is not easy to differentiate a large, infiltrative malignant PNST from other sarcomas, unless the mass demonstrates certain imaging features, such as a location along the course of a large nerve or an intermuscular distribution (“split fat sign”) (48).
Figure 13. Schwannoma in a 66-year-old man. (a) Axial fat-suppressed T2-weighted MR image (3500/80) shows a well-circumscribed mass lateral to the rib cage. Diffusely scattered areas of heterogeneous signal intensity with a ringlike pattern (arrowheads) are seen against a hyperintense tumor background (fascicular sign). (b) Photomicrograph (original magnification, ×100; H-E stain) exhibits an Antoni A zone of hypercellularity composed of spindle cells (arrow) and an Antoni B zone of hypocellularity demonstrating myxoid components (arrowhead).

Furthermore, the differentiation of malignant PNSTs from benign neurogenic tumors is sometimes difficult. MR imaging findings that favor a diagnosis of malignant PNST include a size over 5 cm, the absence of the target sign or fascicular sign, the presence of an ill-defined margin, and rapid interval growth on follow-up images (43).

Cutaneous Lesions
When imaging seems to indicate that a lesion originated from cutaneous tissue, the differential diagnosis includes epidermal inclusion cyst, pilomatrixoma, and dermatofibrosarcoma pro-tuberans (DFSP), along with cutaneous hemangioma and granuloma annulare, which are not discussed in this article.

Epidermal Inclusion Cyst.—Epidermal inclusion cysts result from a proliferation of epidermal cells within a circumscribed dermal space. The dermal space fills with keratin debris and is bounded by a wall of stratified squamous epithelium, resulting in the formation of a cyst. Epidermal inclusion cysts involve the scalp, face, neck, trunk, and back in more than 90% of cases (49) and are frequently observed on the chest wall. These cysts demonstrate characteristic MR imaging findings, including (a) a well-demarcated mass with variable low signal intensity with or without a cystlike high-signal-intensity background on T2-weighted images, (b) hyperintense foci on T1-weighted images, and (c) peripheral thin rim enhancement. It has been suggested that the hyperintense foci observed on T1-weighted images represent calcium components. The variable low signal intensity observed on T2-weighted images has been reported to be due to various components contained within the cyst (Fig 15). These characteristics, which are not typical of other masses with high water content, help differentiate epidermal inclusion cysts from other cystic lesions (50).
intensity on T2-weighted images, and they are considered to be covered with a connective tissue capsule, which enhances after gadolinium administration. However, the center of the lesion does not enhance prominently, with the exception of septa. Peritumoral edema or inflammation can also be identified at MR imaging (Fig 16).

Calcium deposition commonly occurs in the shadow cell region and stroma (69%–85% of cases) (53). When calcification occurs, the radiologic differential diagnosis includes a calcified lymph node, ossifying hematoma, and hemangioma with phlebolith. Granuloma annulare and DFSP, both of which have a superficial location, are also included in the differential diagnosis, but both manifest as soft-tissue masses without calcification (54).

Pilomatricoma.—Pilomatricomas, formerly known as pilomatrixomas, are benign subcutaneous tumors that arise from hair matrix and are most commonly found in children and young adults (51). They are typically located on the head and neck (68% of cases), with 29% seen on the trunk and 17% on the extremities (52). Pilomatricomas have a superficial location and typically manifest as subcutaneous or dermal nodules. At pathologic analysis, they are seen to consist of epithelial cells with basophilic cytoplasm arranged in an arclike fashion at the periphery (basaloid cells). In time, these cells are transformed into shadow cells (also known as ghost cells), which are more centrally located. These eosinophilic cells have no nuclei and are filled with keratin. The intracellular stroma is collagenous and contains dilated blood vessels (53). Pilomatricomas typically have homogeneous intermediate signal intensity on T1-weighted MR images and heterogeneous intermediate signal intensity on T2-weighted images, and they are considered to be covered with a connective tissue capsule, which enhances after gadolinium administration. However, the center of the lesion does not enhance prominently, with the exception of septa. Peritumoral edema or inflammation can also be identified at MR imaging (Fig 16). Calcium deposition commonly occurs in the shadow cell region and stroma (69%–85% of cases) (53). When calcification occurs, the radiologic differential diagnosis includes a calcified lymph node, ossifying hematoma, and hemangioma with phlebolith. Granuloma annulare and DFSP, both of which have a superficial location, are also included in the differential diagnosis, but both manifest as soft-tissue masses without calcification (54).

Dermatofibrosarcoma Protuberans.—DFSP is an uncommon spindle cell tumor that arises in the dermis and typically spreads into subcutaneous tissues and muscles. It is no longer classified as a soft-tissue tumor by the WHO, but rather as
a skin tumor (3). Because of the layer in which this entity occurs, we consider it to be a soft-tissue tumor originating from a cutaneous layer. The trunk is the most common site of involvement (almost 50% of cases) (55). DFSP typically occurs in adolescents, although it may occur much later in life. At CT, this tumor manifests as a well-defined nodular subcutaneous lesion without calcification. MR imaging findings of DFSP vary from a small nodule to a large mass abutting the dermis. The intrinsic MR imaging findings are nonspecific and include hypointensity on T1-weighted images (Fig 17) and hyperintensity relative to fat on T2-weighted images (56). DFSP lesions may include heterogeneous foci of hemorrhage, myxoid change, or necrosis (55).

Figure 16. Pilomatrixoma in a 9-year-old boy. (a) Sagittal gadolinium-enhanced fat-suppressed T1-weighted MR image (550/9) obtained at the level of the upper posterior chest wall shows a nodule with diffuse reticular enhancement. Note the intense enhancement of the fibrous capsule at the periphery on the dermal side of the lesion (arrowheads). (b) Sagittal T2-weighted MR image (3000/90) obtained adjacent to a shows a well-circumscribed subcutaneous nodule that is hyperintense relative to adjacent muscle. The increased signal intensity surrounding the nodule (arrowheads) suggests peritumoral edema. (c) Photomicrograph (original magnification, ×12; H-E stain) reveals nucleated basaloid cells (arrowheads) under a capsule of compressed fibrous tissue (arrows) deep to the dermis (*). The fibrous capsule corresponds to the area of enhancement seen at the lesion periphery in a.

Figure 17. DFSP in a 46-year-old woman. (a) Sagittal gadolinium-enhanced fat-suppressed T1-weighted MR image (550/9) shows an intensely enhancing nodule at the posterior chest wall that extends along and invades the deep layer of the dermis (arrowhead). (b) Photograph of the cut surface of the excised specimen shows ill-defined whitish tumor tissue (arrowhead) extending along the deep layer of the dermis, a finding that corresponds to the linear enhancing lesion seen in a.
Fibroblastic-Myofibroblastic Tumors
Of the numerous fibroblastic-myofibroblastic tumors, we discuss two in this article: elastofibroma dorsi and fibromatosis.

Elastofibroma Dorsi.—Elastofibroma dorsi is a pseudotumor of the soft tissue with a 4:1 female predilection. The average patient age at onset is 60 years (range, 41–80 years). In one investigation, most lesions (93%) were reported to occur in deep dorsal regions between the thoracic wall and the lower third of the scapula under the serratus anterior and latissimus dorsi muscles (57). These lesions are often asymptomatic, and bilaterality is common (10%–66% of cases) (58). At MR imaging, elastofibroma dorsi typically manifests as a mass with a signal intensity similar to that of muscle on both T1- and T2-weighted images, with interspersed streaks of fat in a fascicular pattern (Fig 18) (59).

Fibromatosis.—Fibromatosis, or desmoid tumor, is considered to be a true neoplasm and is composed of well-differentiated fibroblasts embedded in an abundant collagenous matrix with increased cellularity at the periphery (60). It arises from connective tissue in muscle, fascia, or aponeurosis, or sometimes at the site of a traumatic or postsurgical scar. Generally, fibromatosis is poorly circumscribed, nonencapsulated, and infiltrative, and grows insidiously. Although the lesion is locally aggressive, it is not malignant and does not metastasize. The chest wall has been reported to be the site of origin in 10%–28% of cases (9). Fibromatosis often affects adolescents and young adults (Fig 19) but may also occur in older patients. At CT, fibromatosis may be poorly defined, suggesting aggressiveness, and may show variable attenuation and enhancement owing to varying degrees of cellularity, matrix water content, and infiltration (61). At MR imaging, fibromatosis usually has heterogeneous signal intensity, which probably reflects different amounts and distributions of spindle-shaped cells, extracellular collagen, and myxoid matrix. In one report, T2-weighted imaging depicted hypointense bands in 86% of cases of fibromatosis, a finding that probably corresponded to dense conglomerations of collagen bundles, which were observed histologically (62). These collagen bundles do not enhance after contrast material administration, although tumors typically show moderate to marked heterogeneous enhancement (63).

So-called Fibrohistiocytic Tumors
UPS is classified as a fibrohistiocytic tumor by the WHO (3). It is a pleomorphic soft-tissue sarcoma that arises in deep fascia or skeletal muscle and is the most common malignant soft-tissue tumor in adults (58), although its imaging features are nonspecific. It tends to be found on the thigh, on the trunk, or in the retroperitoneum, but is found only rarely at the chest wall. Clinical cases show a slight female predilection and a mean patient age of 55 years at onset (64). According to the WHO classification system, there are three histologic subtypes of UPS: high-grade pleomorphic sarcoma, pleomorphic sarcoma with giant cells, and pleomorphic sarcoma with prominent inflammation.

Before describing the imaging features of UPS, we should address myxoid malignant fibrous histiocytoma, which was previously considered to
be a subtype of UPS. Myxoid malignant fibrous histiocytoma is now referred to as myxofibrosarcoma and is categorized as a fibroblastic-myofibroblastic tumor rather than a fibrohistiocytic tumor (37). However, we describe the imaging findings of UPS and myxofibrosarcoma together because these findings overlap, although they sometimes reflect histologic differences.

At CT, UPS manifests as nonspecific, heterogeneous enhancing masses in muscle and fascial planes, whereas myxofibrosarcoma typically demonstrates a hypoattenuating central region with peripheral nodular enhancement, reflecting a central myxoid matrix and greater peripheral cellularity (9). Although calcification or ossification has been reported at the lesion periphery in a small percentage of cases of UPS, calcification is generally considered unusual except in previously treated cases (9,27,64). At MR imaging, the signal intensity of soft-tissue fibrous malignancies
is typically intermediate to low on T1-weighted images and intermediate to high on T2-weighted images (Fig 20). Variations in signal intensity are believed to correlate with various fibrous tissue components with high collagen content (low signal intensity with all pulse sequences), myxoid tissue (low signal intensity on T1-weighted images and high signal intensity on T2-weighted images), and hemorrhage (variable signal intensity) (37).

Summary

The presence of a bone lesion in the chest wall with locally aggressive features and mineralization suggests the diagnosis of chondrosarcoma, whereas nonmineralization should raise suspicion for metastasis or myeloma. A benign-appearing bone lesion involving the chest wall should initially be considered to represent fibrous dysplasia or osteochondroma. In primary soft-tissue masses of the chest wall, MR imaging findings of thick septa, nodular enhancement on contrast-enhanced T1-weighted images, and a nonadipose component involving more than 25% of the mass favor a diagnosis of liposarcoma rather than lipoma. The target sign and fascicular sign are useful MR imaging findings of PNST but are not pathognomonic for neurofibroma or schwannoma, respectively, and do not allow the differentiation of benign from malignant PNSTs.

Serpentine vascular channels, phleboliths, and fat foci are diagnostic for hemangioma. A superficial aggressive tumor associated with lymphedema suggests angiosarcoma. Subcutaneous lesions that originate from the skin suggest epidermal inclusion cyst, pilomatricoma, or DFSP as a likely diagnosis. On the other hand, elastofibroma occurs at the lower tip of the scapula and is likely to be bilateral.

References

Imaging of Primary Chest Wall Tumors with Radiologic-Pathologic Correlation

Se Jin Nam, MD • Sungjun Kim, MD • Beom Jin Lim, MD • Choon-Sik Yoon, MD • Tae Hoon Kim, MD • Jin-Suck Suh, MD • Doo Hoe Ha, MD Jong Won Kwon, MD • Young Cheol Yoon, MD • Hye Won Chung, MD • Mi Sook Sung, MD • Yun Sun Choi, MD • Jang Gyu Cha, MD

RadioGraphics 2011; 31:749–770 • Published online 10.1148/rg.313105509 • Content Codes: CE, MS

Page 752
Chondrosarcoma is the most common primary malignant bone tumor of the chest wall and accounts for 33% of all primary rib tumors, with myeloma being the second most common. Ewing sarcoma is the most common primary bone tumor in children (1,8–10). Fibrous dysplasia is the most common benign tumorous condition of the osseous chest wall, accounting for approximately 30% of these tumors (11).

Page 757
However, enchondroma is generally considered to occur only rarely on the chest wall (7,26); chondrosarcoma is much more common. Hence, a destructive osseous lesion of the chest wall is initially suspected by the radiologist to be chondrosarcoma when mineralization is present (27).

Page 758
In adults, the most common benign soft-tissue neoplasm is lipoma, and the most common malignant neoplasm is undifferentiated pleomorphic sarcoma (UPS), a term that is used interchangeably with malignant fibrous histiocytoma. In children, rhabdomyosarcoma and primitive neuroectodermal tumor (Askin tumor) are the most common malignant soft-tissue tumors (26).

Page 759 (Figure on page 759)
MR imaging features that suggest well-differentiated liposarcoma rather than lipoma include the presence of (a) prominent internal septa greater than 2 mm in thickness, and (b) nodular nonadipose areas (35). The gadolinium enhancement of nonadipose regions is variable (Fig 9) and has been described as ranging from mild to marked (35); however, one research group reported that the thick, irregular septa of liposarcomas enhance significantly in most cases, whereas thin septa enhance only faintly (38).

Page 764
Calcium deposition commonly occurs in the shadow cell region and stroma (69%–85% of cases) (53). When calcification occurs, the radiologic differential diagnosis includes a calcified lymph node, ossifying hematoma, and hemangioma with phlebolith. Granuloma annulare and DFSP, both of which have a superficial location, are also included in the differential diagnosis, but both manifest as soft-tissue masses without calcification (54).