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Recent evidence indicates that the voltage clock (cyclic activation and deactivation 
of membrane ion channels) and Ca2+ clocks (rhythmic spontaneous sarcoplasmic 
reticulum Ca2+ release) jointly regulate sinoatrial node (SAN) automaticity. How-
ever, the relative importance of the voltage clock and Ca2+ clock for pacemaking 
was not revealed in sick sinus syndrome. Previously, we mapped the intracellular 
calcium (Cai) and membrane potentials of the normal intact SAN simultaneously 
using optical mapping in Langendorff-perfused canine right atrium. We demon-
strated that the sinus rate increased and the leading pacemaker shifted to the supe-
rior SAN with  robust late diastolic Cai elevation (LDCAE) during β-adrenergic 
stimulation. We also showed that the LDCAE was caused by spontaneous diastol-
ic sarcoplasmic reticulum (SR) Ca2+ release and was closely related to heart rate 
changes. In contrast, in pacing induced canine atrial fibrillation and SAN dysfunc-
tion models, Ca2+ clock of SAN was unresponsiveness to β-adrenergic stimulation 
and caffeine. Ryanodine receptor 2 (RyR2) in SAN was down-regulated. Using 
the prolonged low dose isoproterenol together with funny current block, we pro-
duced a tachybradycardia model. In this model, chronically elevated sympathetic 
tone results in abnormal pacemaking hierarchy in the right atrium, including sup-
pression of the superior SAN and enhanced pacemaking from ectopic sites. Final-
ly, if the LDCAE was too small to trigger an action potential, then it induced only 
delayed afterdepolarization (DAD)-like diastolic depolarization (DD). The failure 
of DAD-like DD to consistently trigger a sinus beat is a novel mechanism of atrial 
arrhythmogenesis. We conclude that dysfunction of both the Ca2+ clock and the 
voltage clock are important in sick sinus syndrome. 

Key Words: 	�Calcium, sinoatrial node, sarcoplasmic reticulum, sick sinus syn-
drome

INTRODUCTION

The sinoatrial node (SAN) automaticity is responsible for initiating the heart 
rhythm. SAN function is therefore essential for normal cardiac physiology. Al-
though it has been shown more than 40 years ago that spontaneous diastolic depo-
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play a role in the positive chronotropic effect of β-adrenergic 
stimulation in latent pacemaker cells.10-12 Lakatta, et al. sug-
gested that the spontaneous rhythmic SR Ca2+ release in 
SAN cells, manifested as Ca2+ sparks, work as the “Ca2+ 
clock”. The elevated Cai causes diastolic depolarization via 
INCX activation, which coordinately regulates sinus rate 
along with the voltage clock.13-15 

The idea of Ca2+ clock suggests that the mechanism of au-
tomaticity is the same as that of delayed afterdepolarization 
(DAD), which occurs when there is SR Ca2+ overload. This 
suggests that the SAN must exist normally in a state of calci-
um overload. Vinogradova, et al.15 also demonstrated that a 
high basal level of protein kinase A (PKA) activity in the 
SAN might contribute to a state of Ca2+ overload. The dis-
ease associated with Ca2+ clock malfunction was also report-
ed in patients with a genomic deletion of ryanodine receptor 
2 (RyR2) exon-3. Patients with that mutation develop cate-
cholaminergic polymorphic ventricular tachycardia, along 
with SAN and atrioventricular node dysfunction, atrial fibril-
lation and atrial standstill.16 It is possible that Ca2+ clock mal-
function contribute to the bradycardia and atrial arrhythmias 
in these patients.

Pacemaker hierarchy and the importance of Ca2+ 
clock in intact SAN
The cardiac automaticity at the organ level is a very com-
plex phenomenon and, beside cellular mechanisms, integra-
tive factors are involved in cardiac pacemaking. The intact 
SAN is a heterogeneous structure that includes multiple dif-
ferent cell types interacting with each other.17-19 The relative 
importance of the voltage and Ca2+ clocks for pacemaking 
in different regions of the SAN, and in response to neuro-
humeral stimuli such as β-agonists, may be different. In-
deed, activation maps in intact canine right atrium (RA) 
showed that SAN impulse origin is multicentric,20 and sym-
pathetic stimulation predictably results in a cranial (superi-
or) shift of the pacemaking site in human and dogs.21,22 
Based on evidence from isolated SAN myocytes, late dia-
stolic Cai elevation (LDCAE) relative to the action poten-
tial upstroke is a key signature of pacemaking by the Ca2+ 
clock.10-15 It is possible that the same phenomenon could 
provide insights into the relative importance of the Ca2+ and 
voltage clock mechanisms in pacemaking in intact SAN tis-
sue. We therefore designed a study to determine the role of 
Ca2+ and voltages clocks on the heart rhythm generation 
and on the mechanisms of pacemaker hierarchy in the in-
tact SAN.23  

larization of SAN cells periodically initiates action poten-
tials to set the rhythm of the heart, the mechanism of heart 
rhythm generation is still unclear. Sick sinus syndrome is 
an abnormality involving the generation of the action po-
tential by the SAN and is characterized by an atrial rate in-
appropriate for physiological requirements. The sick sinus 
syndrome occurs in 1 of every 600 cardiac patients older 
than 65 years and accounts for approximately half of im-
plantations of pacemakers in the United States.1 A better 
understanding of the mechanisms of SAN automaticity and 
sick sinus syndrome is therefore clinically important. 

Voltage and calcium clocks in the SAN automaticity 
The mechanism of spontaneous diastolic depolarization has 
traditionally been attributed to a “voltage clock” mechanism, 
mediated by voltage-sensitive membrane currents, such as 
the hyperpolarization-activated pacemaker current (If) regu-
lated by cyclic adenosine monophosphate (cAMP).2,3 The 
funny channel becomes activated at the end of the action 
potential (at voltages from - 40/- 50 mV to - 100/- 110 mV), 
which corresponds to the range where diastolic depolariza-
tion occurs. It then depolarizes the membrane to a level 
where L-type Ca2+ channel open to initiate the action poten-
tial.4,5 If is a mixed Na+-K+ inward current activated by hy-
perpolarization and modulated by the autonomic nervous 
system. Because the membrane ionic channels open and 
close according to the membrane potential, this process is 
referred to as membrane voltage clock. The major role of If 
has been reinforced by the fact that mutations in the If chan-
nel are associated with reduced baseline heart rate,6 and 
drugs which blocks If (such as ivabradine) do the same.7 
However, while point mutation of hyperpolarization-acti-
vated cyclic nucleotide-gated channel 4 (HCN4) is associ-
ated with baseline sinus bradycardia, the maximum heart 
rate achieved during exercise is normal.8 The latter finding 
implies that If is not the only mechanism of SAN automa-
ticity, especially during sympathetic activation.

Recently, the spontaneous sarcoplasmic reticulum (SR) 
Ca2+ release was suggested as an additional mechanism of 
sinus rhythm generation also known as the Ca2+ clock. The 
involvement of intracellular calcium (Cai) cycling in heart 
rhythm generation was first suggested from the observation 
that application of ryanodine slowed subsidiary pacemakers 
in cat right atrium.9  Subsequent work showed the involve-
ment of the electrogenic Na-Ca exchange current (INCX) in 
pacemaker activity and also raised the possibility that in-
creased Ca2+ release followed by activation of INCX could 
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during isoproterenol infusion and suggests that Cai reuptake 
by SR is the fastest in the superior SAN (Fig. 1D). The key 
protein regulator of SR Ca2+ uptake is phospholamban, 
which inhibits SERCA2a in its dephosphorylated state. 
There was a significantly lower SERCA2a/phospholamban 
ratio at SAN sites than at RA sites, suggesting more phos-
pholamban molecules are available to regulate SERCA2a 
molecules in SAN than in RA. Isoproterenol infusion phos-
phorylates phospholamban and relieves phospholamban in-
hibition of SERCA2a, which may account for more robust 
Ca2+ uptake in SAN than in RA during isoproterenol infu-
sion.23 

Mechanisms of diastolic depolarization of SAN
The LDCAE was closely related with the SR Ca2+ release. 
Caffeine sensitizes the ryanodine receptor 2 to activation, 
resulting in increased SR Ca2+ release.24 The superior shift 
of LDCAE and the pacemaking site was also consistently 
observed with caffeine infusion. The ryanodine, which 
block ryanodine receptors, caused a dose-dependent sup-
pression of sinus node activity, and impaired isoproterenol-

Heterogeneous Cai dynamics in intact SAN 
At baseline, the spontaneous diastolic SR Ca2+ release, 
which is manifested by the LDCAE, was observed in only 
a small percentage of the preparations. However, LDCAE 
occurred in all preparations during isoproterenol infusion, 
associated with a superior shift of the leading pacemaker 
site, coincident with the appearance of robust LDCAEs 
(Fig. 1) in this region. Most importantly, the site of maxi-
mum LDCAE slope always co-localized with the leading 
pacemaking site, suggesting a shift in which the voltage 
clock now lagged the Ca2+ clock (Fig. 2).  This observation 
indicates a strong association between LDCAE and pace-
making during β-adrenergic stimulation, and provides new 
insights into pacemaker hierarchy in the canine RA.20-22

The Cai Dynamics of SAN were characterized not only 
by the earliest onset of LDCAE but also by the fastest Cai 

reuptake as compared with other RA sites. The baseline 
90% Cai relaxation time was shorter at superior SAN than 
at other RA sites. This resulted in the formation of the Cai 
sinkhole, which was facilitated by a rapid decline (short re-
laxation time) of the Cai fluorescence at the superior SAN 

Fig. 1. Activation pattern of SAN and surrounding RA during isoproterenol infusion of 0.3 µmol/L. (A) Isochronal map of Vm. The number on 
the each isochronal line indicates time (ms). White shaded area is the SAN. (B) The Vm (blue) and Cai (red) recordings from the superior 
(a), middle (b), inferior (c) SANs and RA (d) presented in A. (C) Magnified view of Cai and Vm tracings of superior SAN. Note the robust 
LDCAE (solid arrow) before phase 0 of action potential (0 ms), which in turn was much earlier than onset of p wave on ECG. (D) The Vm 
and Cai ratio maps at times from - 60 ms before to 180 ms after phase 0 action potential of C. The LDCAE (broken arrows in frame - 40 and 
- 20 ms) was followed by the Cai sinkhole during early diastole (solid arrow in frame 180 ms). This figure was reproduced with permission 
from Joung, et al.23  SAN, sinoatrial node; RA, right atrium; LDCAE, late diastolic Cai elevation.
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trophysiological remodeling in AF includes action potential 
duration (APD) shortening, the downregulation of L-type 
Ca2+ channel (ICa-L) caused by atrial cardiomyocyte Ca2+ load-
ing,28,29 downregulation of Ito30 and upregulation of IKACh 
and IK1.26,27 The ionic current remodeling could reduce the 
slope of phase 0, hyperpolarize the Vm and reduce the heart 
rate. However, the mechanism of tachycardia induced-SAN 
dysfunction is unclear. Yeh, et al.31 recently reported that If 
downregulation may contribute to the association between 
SAN dysfunction and supraventricular tachyarrhythmias. 
However, normal functioning SAN depends not only on 
membrane ionic currents but also on the rhythmic Ca2+ re-
leases from the SR.10-15

In a recent study, we found that the SAN dysfunction in 
AF is associated with Ca2+ clock malfunction, characterized 
by unresponsiveness to isoproterenol and caffeine, as well 
as downregulation of RyR2 in SAN. Fig. 3A shows a typi-
cal isoproterenol response of RAs from normal dogs. Iso-
proterenol infusion increased heart rate to and shifted the 
leading pacemaker site to superior SAN with a robust LD-
CAE [arrows in Cai tracing of Fig. 3A(b)]. This finding was 
consistently observed in all normal RAs during isoprotere-

induced LDCAE. The combination of ryanodine and thapsi-
gargin also suppressed the sinus node activity, and impaired 
isoproterenol-induced LDCAE. In contrast, the If  blocker, 
ZD 7288 (3 µmol/L) did not prevent LDCAE in the superi-
or SAN. 

Multiple time- and voltage-dependent ionic currents have 
been identified in cardiac pacemaker cells which contribute 
to diastolic depolarization, including ICa-L, ICa-T, IST and vari-
ous types of delayed rectifier K currents.25 Many of these 
membrane currents are known to respond to β-adrenergic 
stimulation. Some of these currents, such as ICa-L, also pro-
mote LDCAE and the acceleration of sinus rate by the Ca2+ 
clock as well as the voltage clock. In intact SAN, both SR 
inhibitors and If blockade slowed sinus rate under basal 
conditions, as well as blunted the isoproterenol-induced in-
crease in sinus rate. Therefore, the interdependence and 
synergy between the two clocks are evident. 

Impaired Ca2+ clock after β-adrenergic stimulation in 
AF dogs
Atrial fibrillation (AF)-induced remodeling of ionic currents 
has been well documented in the atrium.26,27 The typical elec-

Fig. 2. Co-localization of LDCAE and the leading pacemaker site. (A) Upward shift of the leading pacemaker site with LDCAE during isopro-
terenol infusion. (a) Cai ratio maps of SAN at each sinus rate. (b) Corresponding Cai tracings from superior (1, 2), middle (3, 4) and inferior (5, 
6) SAN. At 95 bpm, the sites 4 and 5 had most prominent LDCAEs (asterisks). As sinus rate gradually increased, the sites of Cai elevation 
progressively moved upward. At the maximum sinus rate of 173 bpm, the site 2 had the most apparent LDCAE. (B) Differential responses of 
different SAN sites to isoproterenol. (a) The Cai and Vm tracings from inferior, middle, and superior SAN sites at different sinus rates. (b) The 
LDCAE and DD slopes of superior SAN at different sinus rates. This figure was reproduced with permission from Joung, et al.23  SAN, sino-
atrial node; LDCAE, late diastolic Cai elevation; DD, diastolic depolarization.
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membrane and Ca2+ clocks underlie the mechanisms of 
long sinus pauses. Prolonged (- 1 hour) isoproterenol infu-
sion simulates the persistently elevated sympathetic tone, 
which is typical in patients with heart failure but can also 
occur in normal individuals. The persistently elevated sym-
pathetic tone by itself does not induce tachybradycardia. 
However, If blockade in the presence of prolonged sympa-
thetic stimulation could produce tachybradycardia (Fig. 4). 
This finding highlights the importance of If current in main-
taining normal SAN function in conditions with persistently 
increased sympathetic tone, such as heart failure. Similar to 
the experimental condition, important hallmarks of heart 
failure include both chronically elevated sympathetic tone35 
and a concomitant reduction of If.36 The chronically in-
creased sympathetic tone is known to have profound effects 
on the cardiac contractile function and arrhythmogenesis.37 
However, the effects of chronic prolonged catecholamine 
stimulation on SAN remains poorly understood. 

Our study was the first to map Ca2+ clock function in the 
SAN during prolonged isoproterenol infusion. LDCAE 
slope and 90% Cai relaxation time reached peak at 5 ± 2 min 
after isoproterenol infusion, and decreased after prolonged 
infusion. This finding occurred with the shift of the leading 
pacemaker site from superior to inferior SAN (Fig. 5). 

nol infusion. However, LDCAE increase in superior SAN 
was completely absent in AF dogs [Fig. 3B(b)]. Also, the 
heart rate was increased by the acceleration of the ectopic 
focus from inferior RA [Fig. 3B(a)]. The Cai tracing showed 
no LDCAE anywhere in the mapped region with isoproter-
enol dose ranging from 0.01 to 10 µmol/L.32,33

Sympathetic stimulation and tachybradycardia 
syndrome
It is known that heart failure is frequently associated with 
SAN remodeling, resulting in decreased SAN reserve.34 We 
performed nerve recording in a canine model of pacing-in-
duced heart failure and found intermittent tachybradycardia 
episodes.35 Interestingly, the prolonged (>3 s) sinus pauses 
were triggered not by vagal activation but by short bursts of 
sympathetic activity. Typically, a burst of sympathetic ac-
tivity is associated with tachycardia. When there is sympa-
thetic withdrawal, the tachycardia terminates, followed by 
prolonged pauses during which no activation was observed. 
The molecular mechanism of this association, however, re-
mains unclear.

In a recent study, we developed various model of sick si-
nus syndrome with pharmacological manipulation of Ca2+ 
and membrane ion clock. Combined malfunction of both 

Fig. 3. Complete absence of LDCAE in AF dogs during isoproterenol infusion. (A) Isoproterenol response of normal dogs. In normal 
dogs, isoproterenol increased the heart rate and shifted the leading pacemaker site to the superior SAN with robust LDCAE (arrows). 
(B) Isoproterenol response of AF dogs. The LDCAE was complete absent in AF dogs during isoproterenol infusion. (a) RA Vm isochronal 
map. (b) Cai tracings from superior (S), mid (M), and inferior (I) SANs. (c) SAN LDCAE isochronal map. The unit of numbers on RA Vm 
isochronal map is ms. The earliest activation of RA was considered as 0 ms. This figure was reproduced with permission from Joung, 
et al.32,33 SAN, sinoatrial node; AF, atrial fibrillation; RA, right atrium; LDCAE, late diastolic Cai elevation.
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pression of the superior SAN and enhanced pacemaking 
from ectopic sites.39 

Subthreshold DAD and a new mechanism of atrial 
arrhythmia
Automaticity and triggered activity are thought to be two 
distinct mechanisms for the initiation of heart beats. Auto-

SNRT and cSNRT were increased after ZD 7288 infusion in 
the presence of prolonged isoproterenol infusion. These 
findings provide new insights into the mechanism of SAN 
dysfunction commonly found in patients with heart failure.38 

Our results from an in vitro tachybradycardia model indi-
cate that chronically elevated sympathetic tone results in 
abnormal pacemaking hierarchy in the RA, including sup-

Fig. 4. Tachybradycardia produced by prolonged isoproterenol and ZD 7288 infusion. The figure shows pseudo ECG from canine isolated 
RA. Upper panel, eight episodes of tachybradycardia. Lower panel, expanded view of a section marked by asterisk (*) showing 4.0 s and 
3.5 s pauses. This figure was reproduced with permission from Joung, et al.39 RA, right atrium.
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cells, spontaneous SR Ca release in conditions of impaired 
INCX may result in membrane potential (Vm) oscillation with-
out leading to regenerative action potential. However, 
whether or not DADs can occur in the intact SAN remains 
unknown.

We demonstrated that in intact RA preparation, failure of 
subthreshold DAD to reach threshold allowed latent pace-
makers elsewhere to activate the atrium, resulting in atrial 
arrhythmia (Fig. 6). In these arrhythmic episodes, a beat 
that closed the longer PP interval, rather than a premature 
beat, was from an ectopic focus. This phenomenon was also 
compatible with the concept of parasystole in which the 
SAN was a source of normal rhythm while the ectopic pace-
maker was the parasystolic focus. When the SAN failed to 
generated a rhythm to inhibit (or pre-excite) the parasystol-
ic focus, the latter was able to exit and capture the entire 
RA. Shinohara, et al.50 recently used the same intact RA 
preparation to study the mechanisms of pacemaking of the 

maticity occurs spontaneously and can be a source of both 
normal and abnormal heart beats, while triggered activity is 
pacing-induced and is almost always pathological. A mech-
anism of triggered activity is spontaneous (non-voltage gat-
ed) sarcoplasmic reticulum (SR) Ca release, which causes 
Na-Ca exchanger current (INCX) activation and membrane 
depolarization, resulting in delayed afterdepolarization 
(DAD).40 When DAD reaches threshold, it initiates trig-
gered activity and arrhythmia (reverse excitation-contrac-
tion coupling).41,42 Recent studies, however, showed that 
rhythmic spontaneous Ca release (“Ca clock”)43-45 may 
work together with hyperpolarization-activated membrane 
currents (“membrane clock”) to generate normal sinus 
rhythm, a prototypical example of normal automaticity. 
These findings suggest that SAN activity may share mecha-
nisms that underlie both automaticity and triggered activity, 
i.e., INCX activation.11,12,14,40,46-49 Consistent with this hypothe-
sis, Bogdanov, et al.49 showed that in single isolated SAN 

Fig. 6. The intermittent pattern of subthreshold DADs. These tracings were obtained during isoproterenol infusion (0.03 µmol/L) in the first 
RA preparation. (A) Optical signals of Cai (red) and Vm (blue) from superior (a and b), middle (c and d), and inferior (e and f) SAN, and RA 
(g). There were 3 consecutive activations in this figure. Among them, the first 1) and third beats show LDCAE (arrows) followed by the ini-
tiation of sinus beats from the same sites. In contrast, the second beat 2) showed both LDCAE on Cai tracings and subthreshold DADs on 
Vm tracings (asterisks). The downslope of the subthreshold DADs were observed because they failed to trigger an action potential. (B) Vm 
isochronal maps of the first (1) and second (2) beats. The white shaded area is the SAN. The first beat 1) was from SAN. Because subse-
quent LDCAE in the SAN (asterisks in Panel A) failed to trigger a sinus beat, an ectopic pacemaker was able to take over and activate the 
mapped region 2). This figure was reproduced with permission from Joung, et al.51 RAA, right atrial appendage; SVC, superior vena cava; 
A, anterior; P, posterior; S, superior; I, inferior, DAD, delayed afterdepolarization; SAN, sinoatrial node; RA, right atrium; LDCAE, late dia-
stolic Cai elevation.
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