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Abstract

Although several prognostic signatures have been developed in lung cancer, their application in clinical practice has been
limited because they have not been validated in multiple independent data sets. Moreover, the lack of common genes
between the signatures makes it difficult to know what biological process may be reflected or measured by the signature.
By using classical data exploration approach with gene expression data from patients with lung adenocarcinoma (n = 186),
we uncovered two distinct subgroups of lung adenocarcinoma and identified prognostic 193-gene gene expression
signature associated with two subgroups. The signature was validated in 4 independent lung adenocarcinoma cohorts,
including 556 patients. In multivariate analysis, the signature was an independent predictor of overall survival (hazard ratio,
2.4; 95% confidence interval, 1.2 to 4.8; p= 0.01). An integrated analysis of the signature revealed that E2F1 plays key roles in
regulating genes in the signature. Subset analysis demonstrated that the gene signature could identify high-risk patients in
early stage (stage I disease), and patients who would have benefit of adjuvant chemotherapy. Thus, our study provided
evidence for molecular basis of clinically relevant two distinct two subtypes of lung adenocarcinoma.
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Introduction

Lung cancer is one of the most common cancers worldwide,

accounting for an estimated 226,160 new cases and 160,340

deaths in 2012 in the United States alone [1]. The vast majority of

lung cancers are non-small cell lung cancers (NSCLCs), of which

adenocarcinoma is the most common histology (approximately

50% of all NSCLCs) [2].

The American Joint Committee on Cancer (AJCC) staging

system is currently used to guide treatment decisions and is the

best predictor of prognosis for patients with NSCLC. Although

surgical resection is potentially curative and the most effective

treatment for patients with early-stage NSCLC, 35% to 50% of

patients with AJCC-defined stage I disease will experience

a recurrence within 5 years [3–5]. This indicates that NSCLC is

a very heterogeneous cancer even in the earliest stage, and this

underlying heterogeneity is not well-reflected in the current staging

system. Small fraction of NSCLC patients have an underlying

EGFR mutations or EML4-ALK fusion which are associated with

relatively high response rates to targeted molecular therapies [6–

8]. However, for the majority of adenocarcinoma patients, we do

not yet have any validated biomarkers to predict overall outcome

or to guide treatment selection. Thus, to improve patient care and

management, it is important to further characterize molecular

subgroups significantly associated with this differential response to

standard treatment and to develop models to predict those who

would receive greatest benefit from these treatments.

Recent advances in technology allow unbiased genome-wide

screening of potential markers or gene-expression signatures that

might reflect prognosis. This approach has shown potential success

in identifying prognostic and predictive markers in breast cancer

[9]. Similar approaches have been applied to NSCLC and

prognostic or predictive molecular signatures that may be

clinically useful have been found [10–29]. However, the majority

of these studies are limited by a lack of validation with large and

multiple independent cohorts, or lack of a statistical test for the

robustness of the predictive models and their contribution as new

markers in prediction improvement [30]. In the current study, we

applied a genome-wide survey of gene-expression data to

distinguish subgroups of lung adenocarcinoma with distinct

biological characteristics associated with prognosis and then

identify a gene-expression signature that best reflects the biological

and clinical characteristics of each subgroup. We further tested the

robustness of our new prognostic gene-expression signature using
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several statistical approaches and multiple independent cohorts.

Finally, we performed pathway analysis to study the biological

differences that characterize each group.

Methods

Patients and Gene Expression Data
All clinical and gene expression data were collected previously

and are available from public databases. Gene expression and

clinical data from the National Cancer Institute (NCI) Director’s

Challenge Consortium were obtained from the caArray database

at the NCI (https://caarraydb.nci.nih.gov/caarray; experiment

ID, jacob-00182). This data set consisted of 4 different patient

cohorts, including Toronto/Canada (TC, n= 82), Memorial

Sloan-Kettering Cancer Center (MSKCC, n= 104), H. Lee Moffit

Cancer Center (HLM, n=79), and University of Michigan

Cancer Center (UM, n= 177) [18]. For exploration and the

discovery of a potential prognostic gene-expression signature and

validation of the signature, patients were divided into 2 groups.

Patients from the TC and MSKCC cohorts were combined for

discovery of the signature (TM cohort, n = 186). Patients from the

HLM and UM cohorts were used as the first validation set (HM

cohort, n = 256). Gene-expression and clinical data from Massa-

chusetts General Hospital (MGH cohort, n = 125) were obtained

from the public website of the Broad Institute (http://www.

broadinstitute.org/mpr/lung) [11] and used as a second validation

set. The data from the Duke Institute for Genome Sciences and

Policy (Duke cohort, n = 58) were obtained from the public website

of Duke University (http://data.cgt.duke.edu/oncogene.php) [22]

and used as a third validation set. The data from Aichi Cancer

Center (ACC cohort, n = 117) were obtained from the National

Center for Biotechnology Information (NCBI) Gene Expression

Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo,

accession number GSE13213) [21] and used as the fourth

validation set.

Although overall survival (OS) and recurrence free survival

(RFS) were available for the NCI Director’s Challenge cohorts

(TM and HM), only OS data were available for remaining cohorts

(MGH, Duke, and ACC). Adjuvant chemotherapy data were

available only for the TM, HM, and ACC cohorts. Of the 442

patients in TM and HM cohorts, 89 (39 in AJCC stage I, 27 in

stage II, 22 in stage III, and 1 with unknown stages) received

standard adjuvant chemotherapy. The remaining patients did not

receive chemotherapy (n= 233) or treatment data were not

available (n = 120). No patient in the ACC cohort received

adjuvant chemotherapy. RFS was defined in a previous study as

the time from surgery to the first confirmed relapse and was

censored when a patient died or was alive without recurrence at

last contact. Table 1 shows the pathological and clinical

characteristics of the patients in all 5 cohorts. All patients had

undergone surgical resection as their primary treatment.

Statistical Analysis of Microarray Data
Biometric Research Branch (BRB)-ArrayTools were used for

statistical analysis of the gene-expression data [31], and all other

statistical analyses were performed in the R language environment

(http://www.r-project.org). Except for data from the ACC cohort,

all gene-expression data were generated using the Affymetrix

(Santa Clara, CA) platform (U95A for the MGH cohort, U133A

for the TM and HM cohorts, and U133 plus 2.0 for the Duke

cohorts). Raw data from the Affymetrix platform were down-

loaded from public databases and normalized using a robust multi-

array averaging method [32]. Data from the ACC cohort were

generated using the Agilent whole-genome microarray platform,

and pre-normalized data were downloaded and used for analysis.

We identified genes that were differentially expressed between

the 2 classes using a random-variance t-test. Differences in gene

expression between the 2 classes were considered statistically

significant if their p value was less than 0.001. Cluster analysis was

performed with Cluster and Treeview [33]. To predict the class of

the independent patient cohort, we adopted a previously de-

veloped model [34–36]. Briefly, gene-expression data in the

training set (the TM cohort) were combined to form a series of

classifiers according to the compound covariate predictor (CCP)

algorithm as described in previous publications [37] and the

robustness of the classifier was estimated by the misclassification

rate determined during leave-one-out cross-validation (LOOCV)

of the training set. When applied to the independent validation

sets, prognostic significance was estimated by evaluating the

differences between Kaplan-Meier plots and log-rank tests

between the 2 predicted subgroups of patients. After LOOCV,

the sensitivity and specificity of the prediction models were

estimated by the fraction of samples correctly predicted.

Multivariate Cox proportional hazard regression analysis was

used to evaluate independent prognostic factors associated with

survival, and we used gene signature, tumor stage, and pathologic

characteristics as covariates. For each clinical variable, Harrell’s

concordance index (c-index) was calculated as a measure of

predictive accuracy [38]. Interpretation of the c-index is similar to

that of the area under a receiver operating characteristic curve.

The higher the c-index, the more informative the variable is about

a patient’s outcome. The c-index analysis was carried out using the

Harrell Miscellaneous (HMISC) package in the R language

environment. The confidence interval (CI) of the c-index was

estimated using 1000 bootstrap resamplings. A p value of less than

0.05 was considered statistically significant, and all tests were 2-

tailed.

Gene Network Analysis
IngenuityTM Pathways Analysis (IPA, Ingenuity SystemsH) was

used for gene network analysis. Gene network analysis was carried

out by using a global molecular network developed from

information contained in the Ingenuity knowledge Base. Out of

470 gene features, 468 were mapped to the Ingenuity Knowledge

Base. Identified gene networks were ranked according to scores

provided by IPA. The score is the likelihood of a set of genes being

found in the networks due to random chance. For example, a score

of 3 indicates that there is a 1/1000 chance that the focus genes

are in a network due to random chance.

Results

Discovery, Development, and Validation of a Prognostic
Gene Expression Signature
To find potential prognostic subgroups of lung adenocarcinoma

with distinct biological characteristics, we collected gene expres-

sion data from previous studies and divide them into 5

independent cohorts (one exploration cohort and 4 validation

cohorts) (Table 1). Hierarchical clustering analysis of the gene

expression data from the exploration data set (TM cohort, n = 186)

revealed 2 distinct subgroups (clusters) of lung adenocarcinoma

(Fig. 1A). Subsequent analysis of the clinical data showed

a significant difference in clinical outcomes between the 2

subgroups. The OS rates of patients in cluster C1 were

significantly lower than those of patients in cluster C2 (3-year

survival rate: 63.7% [cluster C1] vs 90.1% [cluster C2];

p=1.561025 by x2-test). The hazard ratio (HR) for death of

Prognostic Subtypes of Lung Adenocarcinoma
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cluster C1 was 2.36 (95% CI, 1.35 to 4.13; p=0.002). The

significance trend remained the same for RFS (3-year RFS rate:

48.8% [cluster C1] vs 68.7% [cluster C2]; p=0.009 by x2-test).
The HR for recurrence of cluster C1 was 1.58 (95% CI, 1.01 to

2.46; p=0.04). Continuous survival analysis verified that the

patients in cluster C2 had significantly better OS and RFS than

those in cluster C1 (p=0.001 for OS and p=0.02 for RFS, by log-

rank test; Fig. 1B and 1C).

We next sought to identify a limited number of genes whose

expression was tightly associated with the 2 subgroups. By

applying a stringent threshold cutoff (p,0.001 and at least a 2-

fold difference between subgroups), we identified 193 gene features

differentially expressed between 2 subgroups (Fig. S1 and Table
S1). Of note, the expression of many genes involved in cell

proliferation and cell cycle regulation, such as CCNB1, TOP2A,

AURKA, CDC2, and FOXM1, was significantly higher (p,0.001,

by t-test) in patients in the poor-prognosis subgroup (C1),

indicating that tumors in the C1 subgroup had higher cell

proliferation rates. Thus, we renamed the 2 clusters C1 and C2 as

cluster F (for ‘‘fast-growing tumors’’) and cluster S (for ‘‘slow-

growing tumors’’), respectively.

Independent Validation of the Identified Expression
Signature
With a gene expression signature (193 genes) that accurately

reflected prognosis in TM cohort, we next sought to validate the

association of the gene signature with prognosis in 4 independent

patient cohorts (HM, MGM, Duke, and ACC cohort). For this

validation, previously established data training and prediction

methods [34–36] were applied to gene expression data from the

HM cohort (n = 256; Fig. 2A). When lung adenocarcinoma

patients in the HM cohort were stratified according to the

prognostic gene expression signature, Kaplan-Meier plots showed

significant differences in OS (p=9.461024 by log-rank test)

between the 2 subgroups of patients that were predicted by the

CCP (Fig. 2B). The specificity and sensitivity for correctly

predicting subgroup F during LOOCV were 0.881 and 0.975,

respectively.

To assess the robustness of our gene-expression signature, we

applied our prediction method to 2 additional independent

validation cohorts (MGH cohort, n = 125; Duke cohort, n = 58).

Consistent with the results from the HM cohort, the expression

signature successfully discriminated patients with poor prognosis

(subgroup F) from those with a better prognosis (subgroup S;

Fig. 2C and 2D). In addition, we further tested the robustness of

the signature using another independent cohort with a different

ethnic background, that is, the 117 Japanese patients with lung

adenocarcinoma from the ACC cohort [21]. When patients in the

ACC cohort were stratified according to their gene expression

signatures, Kaplan-Meier plots showed significant differences in

OS (p=8.161024 by log-rank test) between the 2 predicted

subgroups (Fig. 2E). Taken together, these results demonstrated

the robustness of the gene signature for identifying patients at high

risk for disease recurrence and poorer survival.

Significant Association of the Gene Signature with
Clinical Variables
To evaluate the prognostic value of the gene expression

signature in combination with other clinical variables, including

patient age at diagnosis, disease stage by AJCC criteria, smoking

Table 1. Clinical and Pathological Features of Lung Adenocarcinoma Cancer Patients.

Variable

TM
Cohort

HM
Cohort

MGH
Cohort

Duke
Cohort

ACC
Cohort

(Exploration cohort)
(Validation cohort
1)

(Validation
cohort 2)

(Validation cohort
3)

(Validation cohort
4)

Number of patients 186 256 125 58 117

Men 83 (44.6%) 140 (54.7%) 53 (42.4%) 27 (46.6%) 60 (51.3%)

Women 103 (55.4%) 116 (45.3%) 72 (57.6%) 31 (53.4%) 57 (48.7%)

Age (years) Median 64 66 64 67 61

Range 35–82 33–87 33–88 43–83 31–84

Disease stage I 119 (64.0%) 158 (61.7%) 76 (60.8%) 34 (58.6%) 79 (67.5%)

II 46 (24.7%) 49 (19.2%) 24 (19.2%) 7 (12.1%) 13 (11.1%)

III 21 (11.3%) 47 (18.4%) 10 (8.0%) 14 (24.1%) 25 (21.4%)

IV 0 (0%) 0 (0%) 15 (12.0%) 3 (5.2%) 0 (0%)

NA 2 (0.7%)

Adjuvant chemotherapy

Yes 56 (30.1%) 33 (12.9%) 0 0 0

No 96 (51.6%) 137 (53.5%) 0 0 117 (100%)

NA 34 (18.3%) 86 (33.6%) 125 (100%) 58 (100%) 0

Number of deaths 74 162 71 32 49

Abbreviations: TM, Toronto and Memorial Sloan-Kettering Cancer Center; HM, H. Lee Moffit Cancer Center and University of Michigan; MGH, Massachusetts General
Hospital; ACC, Aichi Cancer Center; NA, Not available.
doi:10.1371/journal.pone.0044225.t001
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status, sex, and mutation status of certain oncogenes and tumor

suppressor genes (i.e., KRAS, EGFR, and TP53), univariate and

multivariate Cox proportional hazards regression analyses were

performed in the ACC cohort. All patients in this cohort received

uniform treatment (curative resection without adjuvant chemo-

therapy) thus minimizing confounding factors associated with

different treatments. In the univariate analysis, both disease stage

and the gene-expression signature were significantly associated

with OS (p=2.1761024 and p=0.001, respectively). In the

multivariate analysis, disease stage and gene expression signature

maintained their significance (p=0.002 and p=0.01, respectively;

Table 2).

In addition to performing multivariate analysis, we assessed our

new prognostic signature’s potential using the ‘‘drop in concor-

dance index’’ approach [30,39]. Briefly, we generated prediction

models using all clinical variables used in the multivariate analysis.

While the best model was constructed using all of the variables, test

models each lacking 1 variable were generated and compared with

the best model. In each comparison, the predictive value of each

variable was weighted by measuring the decreased value of the c-

index in each test model. Omission of the gene signature in the

prediction model caused the largest decrease in the c-index value

(Table S2), suggesting that the signature not only retains its

Figure 1. Hierarchical clustering analysis of gene expression data from the discovery cohort. (A) Hierarchical clustering of gene-
expression data from 186 patients with lung adenocarcinoma in the discovery (Toronto/Canada and Memorial Sloan-Kettering Cancer Center [TM])
cohort. Genes with an expression level that was at least 2-fold different from the median value across tissues in at least 20 tissues were selected for
hierarchical clustering analysis (3036 gene features). The data are presented in matrix format, where each row represents an individual gene and each
column represents a tissue. Each cell in the matrix represents the expression level of a gene feature in an individual tissue. The red and green color in
the cells reflects the genes’ relatively high and low expression levels, respectively, as indicated in the scale bar (a log2-transformed scale). Kaplan-
Meier plots of the (B) overall survival (OS) and (C) recurrence-free survival (RFS) of patients with lung adenocarcinoma in the TM cohort. Patients were
stratified according to gene-expression patterns (creating two clusters, C1 and C2). RFS data are currently not available from 20 patients.
doi:10.1371/journal.pone.0044225.g001
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prognostic relevance over the classical pathological prognostic

features but also significantly improves the prediction accuracy.

The independence of the new prognostic gene expression

signature over the current staging system was further supported by

analysis of pooled data from all 4 validation cohorts (n = 556). As

expected, the OS of subgroup F was significantly worse than that

of subgroup S (p=3.061028 by log-rank test) when all patients

were included in the analysis (Fig. S2B). In subset analysis, the

gene-expression signature successfully identified poorer survival for

both stage I (p=0.006 by log-rank test) and stage II patients

(p=0.03 by log-rank test; Fig. S2C and S2D). Taken together,

these findings strongly demonstrate that our new prognostic gene-

expression signature is independent from the current staging

system.

Association of the Gene Signature with Potential Benefit
from Adjuvant Chemotherapy
Of the 442 patients from TM and HM cohorts, adjuvant

chemotherapy data were available for 322 patients. Thus, we next

sought to determine whether the new gene expression signature

could predict a potential benefit from adjuvant chemotherapy. To

examine the association of the gene signature with response to

adjuvant chemotherapy, we performed subset analysis with

patients in AJCC stage III, a stage for which the benefit of

adjuvant chemotherapy has been previously demonstrated [40–

42]. Patients with stage III disease (n = 49) were subdivided into 2

subgroups (F or S), and the difference in OS was independently

assessed. Adjuvant chemotherapy significantly affected OS in

patients in subgroup F (3-year OS rate, 29.4% [adjuvant

chemotherapy] vs 16.7% [no adjuvant chemotherapy]; p=0.009

by log-rank test; Fig. 3B). However, there was not a significant

benefit from adjuvant chemotherapy for patients in subgroup S (3-

year OS rate, 50% [adjuvant chemotherapy] vs 60% [no adjuvant

chemotherapy]; p=0.58 by log-rank test; Fig. 3C). When a Cox

regression model was applied, the interaction of subgroups with

adjuvant chemotherapy reached a significance level of 0.03.

Consistent with the Kaplan-Meier plot and log-rank test, the

estimated HR for death for adjuvant chemotherapy in subgroup F

was 0.44 (95% CI, 0.2 to 0.95; p=0.036), while the HR for death

for adjuvant chemotherapy in subgroup S was 1.96 (95% CI, 0.56

to 6.88; p=0.29). This suggests a benefit of adjuvant therapy only

in the F subgroup and potential harm associated with adjuvant

treatment in the S subgroup. A similar trend was observed in the

Stage II patients, although it did not reach statistical significance

(p=0.22) (Fig. S3). In the Stage I patients, there was an overall

trend towards worse outcome with adjuvant chemotherapy (Fig.
S3).

Biological Insights from the Conserved Prognostic Gene-
Expression Signature
To elucidate the biological characteristics of the subgroup with

poor prognosis (subgroup F), we attempted to identify genes whose

expression differed between the ‘‘F’’ and ‘‘S’’ subgroups across all

data sets. We excluded gene-expression data from the MGH

cohort in this analysis to maximize the compatibility of the data

sets, since the MGH data were generated using an old microarray

platform (U95A) with a limited number of gene probes. We

applied a stringent cut-off (p,0.001) to avoid inclusion of potential

false-positive genes. When they were all compared together, 470

genes were shared by all 4 cohorts (Fig. 4A).

We next performed pathway analysis on the 470 genes using the

Ingenuity Pathway Analysis tool that is a controlled vocabulary-

based pathway tool. This analysis revealed a series of putative

networks. Functional connectivity of the top network revealed

a strong over-representation of the E2F1 pathway in patients in

the F subgroup (Fig. S4), suggesting that its activation may be

Figure 2. Construction of the prediction model and evaluation of predicted outcome. (A) Schematic overview of the strategy used for
constructing prediction models and evaluating the predicted outcomes based on gene expression signatures. Kaplan-Meier plots of the overall
survival (OS) of the 2predicted groups of lung adenocarcinoma patients in the (B) HM, (C) MGH, (D) Duke, (E) and ACC cohorts. The differences
between groups were significant, as indicated by the log-rank test. The + symbols in panels B–E indicate censored data.
doi:10.1371/journal.pone.0044225.g002

Table 2. Univariate and Multivariate Cox Proportional Hazard Regression Analyses of Overall Survival in the ACC Cohort (n = 117).

Univariate Multivariate

Variable Hazard Ratio (95% CI) p Hazard Ratio (95% CI) P

Sex
(M vs F)

1.36 (0.77–2.38) 0.28 1.52 (0.66–3.4) 0.31

Age 1.0 (0.97–1.03) 0.67 1.0 (0.97–1.03) 0.68

EGFR
(mutant vs WT)

1.0 (0.57–1.8) 0.95 1.5 (0.77–2.8) 0.23

KRAS
(mutant vs WT)

1.5 (0.7–3.2) 0.27 1.3 (0.57–3.3) 0.5

TP53
(mutant vs WT)

1.35 (0.76–2.4) 0.29 1.1(0.6–2.0) 0.72

Smoking
(yes vs no)

1.36 (0.77–2.4) 0.28 0.76 (0.33–1.7) 0.53

Disease stage
(I, II, III)

1.78 (1.3–2.4) 2.1761024 1.65 (1.2–2.2) 0.002

Gene signature
(F vs S)

2.76 (1.4–5.1) 0.001 2.4 (1.2–4.8) 0.01

Abbreviations: CI, confidence interval; M, male; F (sex), female; WT, wild-type; F (gene signature), fast-growing; S, slow-growing.
doi:10.1371/journal.pone.0044225.t002
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a key genetic determinant associated with the poorer survival of

lung adenocarcinoma patients in this subgroup. Expression of

EZH2, which is frequently overexpressed in many cancers [43],

was also significantly higher in subgroup F, indicating the

importance of the E2F1-EZH2 network in the progression of lung

adenocarcinoma. TP53 was overrepresented in another network

(Fig. S5). Interestingly, many genes negatively regulated by TP53

were overexpressed in the TP53 networks. For example, previous

studies have demonstrated that expression of PRC1 and BUB1 are

directly suppressed by TP53 [44,45], but their expression is

significantly upregulated in subgroup F, suggesting that the

biological activity of TP53 may be substantially lost in this

subgroup.

Discussion

By analyzing gene-expression data from lung adenocarcinoma

tissues, we identified a limited number of genes (193 genes) whose

expression is significantly associated with prognosis. The robust-

ness of this gene-expression signature was validated in 4

independent cohorts with a total of 556 patients. Since current

staging systems and biomarkers are limited in their ability to assess

risk of recurrence and benefit from adjuvant chemotherapy in lung

adenocarcinoma, our new gene-expression signature may repre-

sent a tool that could help further refine treatment decisions based

on the tumors’ molecular profiles.

For development and validation of a robust, prognostic gene

expression signature, we applied 2 independent but complemen-

tary methods. Unsupervised hierarchical clustering was first

applied to identify subgroups with significant differences in

biological characteristics as well as prognosis. In the second

approach, supervised prediction models were applied to validate

the association of the signature with clinical outcomes in 4

independent patient cohorts. The robustness of the 193-gene

signature was supported by the high sensitivity (.0.9) and

specificity (.0.8) values seen during training of the prediction

models within the discovery cohort and a significant association

between the predicted outcome and patient prognosis in 4 test

cohorts. In addition to its robustness, the prognostic gene

signature’s independence as a prognostic marker was supported

by the results of vigorous tests using various approaches. First, the

signature could identify high-risk patients among those with early

stage adenocarcinoma (stage I and II). Second, in multivariate

analysis, the signature was one of the most significant predictive

factors for OS. Third, the signature was the most significant

contributor to the predicted OS in models using the drop-in c-

index approach. Taken together, these results strongly support

that the 2 subgroups of lung adenocarcinoma predicted here are

novel prognostic clinical subgroups that are not recognized by the

current staging system.

Subset analysis of patients with available chemotherapy data

strongly suggested that the 193-gene signature can predict which

patients will benefit from adjuvant chemotherapy. In patients with

stage III disease, adjuvant chemotherapy was significantly

associated with improved outcome for patients in subgroup F

(HR, 0.44; 95% CI, 0.2 to 0.95; p=0.036), whereas its benefit was

not statistically significant for patients in subgroup S (HR, 1.96;

95% CI, 0.56 to 6.88; p=0.29). Thus, our newly identified gene

signature showed both a prognostic and predictive association.

Interestingly, our prognostic gene expression signature lacks

overlapped genes with previously identified prognostic gene

expression signatures. For example, of 193 genes, only one gene

is common with the prognostic signature discovered in Japanese

patients [21]. Likewise, no or only few genes were shared with

other signatures such as EGFR-mutation signature [29], stage I

specific prognostic signature [27], and ALK-associated gene

expression signature [28]. Moreover, when different signatures

were compared all together in multiple-comparison manner, only

few genes were shared among the signatures. Our finding is

consistent with previous study in breast cancer showing absence of

gene overlap although concordance of predicted outcome is very

high [46].

Figure 3. Significant association of the 2 gene-expression signature subtypes with adjuvant chemotherapy. (A) Kaplan-Meier plots of
the overall survival (OS) of adenocarcinoma patients in the TM and HM cohorts. The data were plotted according to the prognostic gene-expression
signature (subgroups F and S). Kaplan-Meier plots of patients in (B) subgroup F or (C) subgroup S with stage III disease. Data were plotted according
to whether patients were treated with or without adjuvant chemotherapy (CTX).
doi:10.1371/journal.pone.0044225.g003
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Overexpression of EZH2, a methyltransferase that catalyzes H3

trimethylation on lysine 27 and is essential for stem cell self-

renewal [47], in subgroup F is in good agreement with previous

studies. Its altered expression has been linked to the aggressive

progression of many cancers through its activation of angiogenesis

and maintenance of the tumor-initiating cell (or cancer stem cell)

population [48]. EZH2 is a newly identified downstream target of

E2F1 [49], which is a major downstream effector of the RB tumor

suppressor and has a pivotal role in controlling cell cycle

progression [50]. Expression of E2F1’s well-known downstream

Figure 4. Cross comparison of gene lists from 4 independent cohorts of lung adenocarcinoma patients. (A) Venn diagram of genes
whose expression is significantly different between subgroups F and S. a univariate test (2-sample t-test) with multivariate permutation test (10,000
random permutations) was applied. In each comparison, we applied a cut-off P-value of less than 0.001 to retain genes whose expression was
significantly different between the 2 groups of tissues examined. (B) Expression patterns of selected genes shared in 4 lung adenocarcinoma cohorts.
The expression of 470 genes is commonly up- or down-regulated in all 4 cohorts. Colored bars at the top of the heat map represent samples as
indicated.
doi:10.1371/journal.pone.0044225.g004
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target genes was significantly upregulated in subgroup F (Fig. S4),
indicating that E2F1 was highly activated in subgroup F and that

E2F1-mediated regulation of EZH2 may be a key genetic event

associated with poor prognosis in lung adenocarcinoma.

Expression of TYMS (thymidylate synthase) was also higher in

subgroup F, which is in good agreement with previous studies

showing that higher expression of TYMS is significantly associated

with poorer prognosis in lung adenocarcinoma [51,52]. Peme-

trexed, a potent inhibitor of TYMS [53], has emerged as one of

the most active agents for the treatment of patients with advanced

NSCLC. Previous studies have demonstrated that higher TYMS

expression is associated with a lower chemotherapeutic effect of

pemetrexed in patients with a variety of solid tumors [54–56] and

forced overexpression of TYMS in NSCLC cells reduced sensitivity

to pemetrexed [57]. Since expression of TYMS is significantly

higher in subgroup F, our data suggest that pemetrexed may show

limited antitumor activity for patients in this subgroup. By

contrast, patients in subgroup S may benefit from pemetrexed

because they have lower expression of TYMS. Thus, the 2 newly

identified subgroups of lung adenocarcinoma not only well reflect

previously recognized clinical characteristics of lung adenocarci-

noma but may also provide guidance for treatment regimens.

In a recent evaluation of all prognostic gene expression

signatures for lung cancer [39,58], 2 important criteria were

suggested for a new prognostic signature to be accepted by the

medical community. First, the new signature should be rigorously

tested for statistical validation and reproducibility in large

multiple-patient cohorts. Second, the new signature should show

good predictive power over and above current risk factors. Our

prognostic signature fulfills these 2 suggested criteria, as evidenced

by validation of the signature in 4 independent cohorts (a total of

556 patients), independence from the current staging system,

improvement of predictive power when included in the prediction

model, and identification of high risk-patients with very early-stage

disease. Although interesting, our analysis has some limitations

because we only used mRNA expression level of genes that is not

always correlated with their biological activity. Thus, other

approaches better reflecting biological activity like proteomics

should be used for finding better functional markers in future

study.

In conclusion, using gene-expression data from multiple

cohorts, we identified 2 new prognostic subgroups of lung

adenocarcinoma that show significant differences in patient

survival. The 193-gene signature can identify patients with a high

risk of recurrence, as well as patients who would have benefited

from adjuvant chemotherapy. This study clearly demonstrated

that our gene-expression signature reflects the molecular char-

acteristics of different subgroups of lung adenocarcinoma and

provides an opportunity to rationally design future clinical trials so

that patients who might benefit from adjuvant chemotherapy can

be identified. Our results, if confirmed in prospective studies, may

improve patient care by providing more practical guidance for

treatment.

Supporting Information

Figure S1 Genes differentially expressed between clus-
ter C1 (F) and cluster C2 (S) in TM cohort (n= 186). Genes

were selected by univariate test (2-sample t-test) with multivariate

permutation test and stringent cut-off (P,0.001 and .2-fold

difference) was applied to retain genes whose expression is

significantly different between the 2 groups of tissues examined

(193 genes). The data are presented in matrix format, where rows

represent individual gene and columns represent each tissue. Each

cell in the matrix represents the expression level of a gene feature

in an individual tissue. The red and green color in cells reflect

relative high and low expression levels respectively as indicated in

the scale bar (log2 transformed scale).

(EPS)

Figure S2 Kaplan-Meier plots of the overall survival
(OS) in patients in all validation cohorts. Patients were

stratified by (A) disease stage or (B) gene expression signature.

Subset analysis showed that the gene expression signature was

predictive in patients with (C) stage I or (D) stage II disease. Of 556

patients, stage data are not available from 2 patients.

(EPS)

Figure S3 Kaplan-Meier plots of the overall survival
(OS) in patients with Stage I and Stage II disease in TM
and HM cohorts. The data were plotted according to whether

patients were treated with or without adjuvant chemotherapy

(CTX). (A) Subtype F in stage I. (B) Subtype S in stage I. (C)

Subtype F in stage II. (D) Subtype S in stage II.

(EPS)

Figure S4 E2F1 networks in F subgroup of lung
adenocarcinoma. IngenuityH pathway analysis revealed that

networks of genes considerably associated with the E2F1in

conserved gene expression data from the 4 cohorts. Upregulated

and downregulated genes in the F subgroup are indicated by red

and green, respectively. The lines and arrows represent functional

and physical interactions and the directions of regulation from the

literature.

(EPS)

Figure S5 TP53 networks the in F subgroup of lung
adenocarcinoma. IngenuityH pathway analysis revealed that

networks of genes considerably associated with the TP53 in

conserved gene expression data from the 4 cohorts. Upregulated

and downregulated genes in the F subgroup are indicated by red

and green, respectively. The lines and arrows represent functional

and physical interactions and the directions of regulation from the

literature.

(EPS)

Table S1 Summary of 193 gene features in prognostic
expression signature.

(DOCX)

Table S2 Drop in Concordance-index Score of Clinical
Variables in ACC Cohort.

(DOCX)
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