Complete Genome Sequence of the Bacteriophage YMC01/01/P52 PAE BP, Which Causes Lysis of Verona Integron-Encoded Metallo-β-Lactamase-Producing, Carbapenem-Resistant Pseudomonas aeruginosa

Jongsoo Jeon, Jae-won Kim, Dongeun Yong, Kyungwon Lee and Yunsop Chong

Updated information and services can be found at:
http://jvi.asm.org/content/86/24/13876

REFERENCES

This article cites 13 articles, 5 of which can be accessed free at:
http://jvi.asm.org/content/86/24/13876#ref-list-1

CONTENT ALERTS

Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), [more »](http://jvi.asm.org/content/86/24/13876#ref-list-1)

Information about commercial reprint orders: http://journals.asm.org/site/misc/reprints.xhtml

To subscribe to another ASM Journal go to: http://journals.asm.org/site/subscriptions/
Complete Genome Sequence of the Bacteriophage YMC01/01/P52 PAE BP, Which Causes Lysis of Verona Integron-Encoded Metallo-β-Lactamase-Producing, Carbapenem-Resistant Pseudomonas aeruginosa

Jongsoo Jeon, Jae-won Kim, Dongeun Yong, Kyungwon Lee, and Yunsop Chong

Department of Laboratory Medicine and Research Institute of Antimicrobial Resistance, Yonsei University College of Medicine, Seoul, South Korea; and CJ Cheil Jedang Research Institute of Biotechnology, Seoul, South Korea

Multidrug-resistant Pseudomonas aeruginosa commonly causes serious nosocomial infections. In this study, a novel lytic bacteriophage belonging to a member of the family Podoviridae, YMC01/01/P52 PAE BP, which infects carbapenem-resistant Pseudomonas aeruginosa, was isolated and characterized. YMC01/01/P52 PAE BP genome was analyzed by whole-genome sequencing and putative function identification. The bacteriophage genome consists of a double-stranded linear DNA genome of 49,381 bp with a GC content of 62.16%.

Pseudomonas aeruginosa, a Gram-negative aerobic bacterium, is ubiquitous in the environment, and it can cause serious opportunistic infections. In particular, antibiotic resistance of Pseudomonas spp. has major problems that can complicate antibiotic therapy. Carbapenem-resistant P. aeruginosa is one of the predominant respiratory tract pathogens in patients with cystic fibrosis (CF), and it has been reported increasingly (1, 5, 8).

A novel carbapenem-resistant P. aeruginosa lytic bacteriophage, Bb-P52 (YMC01/01/P52 PAE BP), was isolated from sewage from a university hospital. The agar double-layered technique was used to purify the phage (6), using a Verona integron-encoded metallo-β-lactamase (VIM)-producing, carbapenem-resistant P. aeruginosa strain isolated from a patient. Morphological analysis by electron microscopy revealed that it belonged to the family Podoviridae in the order Caudovirales.

The genome of Bb-P52 was extracted using the phenol extraction method (11). The genomic DNA sequencing was performed by the Illumine Genome Analyzer (Illumina, Inc., San Diego, CA) with 467-fold coverage. The whole genome sequence was analyzed by sequence assembly using Newbler assembler 2.3 (Roche), CodonCodeAliner (CodonCode Co.), and CLC genomics wb 4.8(CLCbio). Potential open reading frames (ORFs) were predicted by GenMark for prokaryotes (3) and the NCBI ORF Finder (10). Putative functions of ORFs were annotated using the Clusters of Orthologous Groups database (9), PSI-Search (http://www.ebi.ac.uk/Tools/sss/fasta/), and BLASTP (2). The nucleotide sequences were compared with other genes by BLASTN (2). The tRNAsc-SE program was used to search for tRNAs (7).

The genome sequence of Bb-P52 was a double-strand linear DNA of 49,381 bp with a GC content of 62.16% and had 72 open reading frames (ORFs) predicted. This genome does not encode tRNAs. The results of Bb-P52 genome analysis show that the phage is highly homologous to Pseudomonas phage phi297 (GenBank accession number HQ711984), belonging to the Siphoviridae family, with identity of 61%.

Predicted functional proteins of Bb-P52 were involved in phage structure and packaging protein (ORF4, putative tail tape measure protein; ORF6, putative major tail subunit; ORF13, putative phage coat protein; ORF17, putative phage portal protein; ORF20, putative phage terminase protein), DNA replication and modification (ORF26, putative DNA helicase; ORF27, phage replication protein; ORF48, endonuclease; ORF55, DNA methylase), and host lysis (ORF70, putative endolysin).

Endolysins rapidly hydrolyze the peptidoglycan bacterial cell wall and have been reported as alternative antimicrobial agents (4, 13). ORF70 is homologous to the endolysin of Pseudomonas phage JG024 (GenBank accession no. GU815091) and Pseudomonas phage PB1 (GenBank accession no. EU716414), with identities of 46% and 47%, respectively.

Bb-P52 is a podoviral phage that causes lysis of carbapenem-resistant P. aeruginosa, which produces VIM-type metallo-β-lactamase. Bacteriophage therapy is a potential alternative tool against multidrug-resistant bacterial infections (12). Therefore, we believe that our research provides accessible elementary data for exploring the potential of bacteriophage therapy to treat Pseudomonas spp. infections.

Nucleotide sequence accession number. The complete genomic sequence of the Pseudomonas phage YMC01/01/P52 PAE BP is available in GenBank under accession no. JX403939.

ACKNOWLEDGMENTS

This study was supported by a National Research Foundation of Korea grant funded by the Korean Government (2009-0074263) and by a grant from the Brain Korea 21 Project for Medical Science, Yonsei University.

We are grateful to Heejung Lim, Sori Jong, and Inhye Kim for technical assistance.

REFERENCES

Received 29 September 2012 Accepted 30 September 2012

Address correspondence to Dongeun Yong, deyong@yuhs.ac.

