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INTRODUCTION

Several attempts have been made to improve the bonding 
between bone and a dental implant by coating the 
titanium of the implant with bioactive materials, like 
hydroxyapatite, which can form a chemical bond with 
bone tissue1-4). Despite the development of this coating 
method, implants have continued to fail. An exposed 
implant can interact with negative bacteria, which can 
lead to infection around the implant. In addition, some 
patients that receive implants have had periodontitis in 
the past. A history of periodontitis and the presence of 
bacteria are risk factors for peri-implant infections5,6). 
And this may ultimately result in implant failure. 
Therefore, many studies have addressed this problem 
with limited success7-12). Therefore, to solve this problem, 
local drug delivery system through antibiotic coatings 
was developed13-17). Recently, precipitation coating 
method was introduced. In this biomimetic precipitation 
method, the titanium implant is immersed into saturated 
solutions of calcium and phosphate that also contain 
antibiotics. When the calcium-phosphate crystals were 
precipitated, the antibiotics were coprecipitated13-16). 
Antibiotics that contain a carboxylic group, like cefalotin, 
have strong binding interactions with calcium. In vitro 
tests have shown that biomimetic coatings have high 
antibiotic incorporation efficiency and a slow release rate 
from the coated surface14). The cefalotin antibiotic is a 
first generation cephalosporin antibiotic.  It is used to 
prevent infection during surgery and to treat many kinds 
of infections of the blood, bone or joints, respiratory tract, 
skin, and urinary tract. The bactericidal activity of 
cefalotin results from the inhibition of cell wall synthesis 
via affinity for penicillin-binding proteins (PBPs). The 

PBPs are transpeptidases which are vital in peptidoglycan 
biosynthesis. Therefore, their inhibition prevents this 
vital cell wall compenent from being properly 
synthesized18).

In this study, the titanium surface was modified by 
anodizing and heat-treatment before applying a 
biomimetic coating. We hypothesized that modifying the 
titanium surface could increase the quantities of 
antibiotic loaded into the coating. We reasoned that 
anodization would increase the porosity and the surface 
area compared to polished titanium19-21). In addition, the 
heat-treatment could increase the crystallinity of the 
titania layer22). Thus, these morphological and phase 
modification could enhance the precipitation of calcium-
phosphate. 

The aim of this study was to demonstrate that 
modifying the titanium surface would result in an 
increased loading of the antibiotic cefalotin onto a 
biomimetic hydroxyapatite coating. In addition, 
antibiotic efficacy was evaluated to determine whether 
this method would improve antibacterial effect. 

MATERIALS AND METHODS

Preparation of specimen
The present study was performed with commercially 
pure titanium (cp-Ti; 10×10×0.25 mm). The titanium 
surfaces were polished mechanically with SiC paper 
with grits of 100, 600, and 1,200 and cleaned ultrasonically 
in acetone, ethanol, and distilled water for 15 min. Then, 
the titanium was anodized at 300 V for 2 min with a DC 
power supply (Genesys 600-2.6, Densi-Lambda, TDK, 
Tokyo, Japan). As the electrolyte, 0.4 M calcium acetate 
(CA) and 0.04 M beta-glycerol phosphate disodium salt 
n-hydrate (β-GP) mixed solution was used. The anodizing 
apparatus is shown schematically in Fig. 1. After 
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anodization, the titanium was heated to 800°C for 4 h in 
the air atmosphere (BF51800 sreies, Lindberg/Blue M, 
TPS, White Deer, PA, U.S.A) to change the crystalline 
phase. Therefore, three experimental groups were 
divided according to the different procedures, as shown 
in Table 1.

Biomimetic coating process
The coating process was performed in two steps. In the 
first step, the titanium was coated with a layer of calcium 
phosphate by immersing five times in concentrated 
simulated body fluid (SBF A; 733 mM NaCl, 21 mM 
NaHCO3, 5 mM NaH2PO4•2H2O, 7.5 mM MgCl2•6H2O, 
12.5 mM CaCl2•2H2O) at 37°C for 24 h14). The SBF A was 
adjusted to a pH of 7.4 with 1 M NaOH and 1 M HEPES 
(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 
buffer. The salts were dissolved by bubbling gas CO2 in 
the solution. When the pH dropped to 6.0, the CO2 
bubbling was terminated. After 24 h, the pH had reached 
approximately 8.0; then, the titanium was rinsed in 
distilled water and dried overnight at room temperature. 
In the second step, the titanium was coated with a layer 
of calcium phosphate that contained an antibiotic. 
Titanium from the first step was immersed in another 
calcium phosphate supersaturated solution (SBF B; 146 
mM NaCl, 1 mM NaHCO3, 2 mM NaH2PO4•2H2O, 0.05 
mM MgCl2•6H2O, 4 mM CaCl2•2H2O) containing 800 
mg/L of cefalotin14). After 48 h at 37°C, the titanium was 
removed from the solution, and then dried at 50°C for 30 
min.

Surface characterization
The surface morphology and elements were examined by 
field-emission scanning electron microscopy (FE-SEM, 
JSM-6700F, Jeol, Tokyo, Japan) and electron dispersive 
spectroscopy (EDS), respectively. The surface layer 
phases were analyzed with a High Resolution X-ray 
Diffractomer (HRXRD, Bruker D8 DISCOVER, 
Karlsruhe, Germany).

In vitro release of antibiotic
Each specimen was immersed in 5 mL distilled water in 
a glass vial. The vials were stored at 37°C for 1, 2, 4, 7, 
14, 30 and 60 days. At the indicated time intervals, the 
distilled water was collected to measure antibiotic 
concentration, and then refreshed. The antibiotic 
concentration was measured with an UV/VIS 
spectrometer (Spectro UV-VIS double beam PC, 
USD-3200, Labomed Inc, Culver city, CA, U.S.A.) at 236 
nm (n=10).

Evaluation of antibacterial activity
Antibacterial activity was evaluated with a film adhesion 
method. This method modified ISO 22196: Plastics-
measurement of antibacterial activity on plastic surfaces 
and JIS Z 2901; Antibcaterial products– Test for 
antibacterial activity and efficacy. Firstly, Streptococcus 
mutans (S. mutans; IFO 13955) which were abundant 
bacteria found almost universally in the mouths and the 
earliest colonizer were cultured aerobically in a conical 
tube that contained 100 mL Brain Heart Infusion (BHI) 
medium at 37°C. The initial concentration of bacteria 
was adjusted to 106–105 colony-forming units (CFU)/mL 
by dilution with phosphate-buffered saline (Invitrogen, 
GIBCO, gland Island, NY, U.S.A.) (PBS, pH 7.2). To test 
for antibiotic efficacy, 50 µL of bacterial solution was 
pipetted onto each specimen. And specimen was covered 
with polyethylene film. This procedure was conducted 
under dark condition to avoid photocatalytic activity. 
After 4 h, the specimen was rinsed with 1 mL PBS and 
bacterial cells were detached by sonication in PBS. And 
100 µL of harvested cells were plated onto Bacto-Agar 
plates. Plates were incubated for 48 h at 37°C to 
determine the number of viable S. mutans (expressed in 
CFUs). (n=15). The uncoated titanium was used as a 
control. 

Statistical analysis
Results of the antibacterial activity test were analyzed 
with the one-way ANOVA test to compare significant 
differences. The significance level was set at 95%.  

RESULTS AND DISCUSSION

Surface characterization
FE-SEM images showed the modified titanium specimens 
before the coating process (Fig. 2a–c). The treatment for 
groups 2 and 3 increased the surface area compared to 
group 1 (polished titanium). The mean surface roughness 
(Ra) of modified titanium was about 0.4 µm. In contrast, 
the Ra of polished titanium was 0.2 µm (data not shown). 

Table 1 Experimental groups used in this study

Group Description

1 Polishing

2 polishing+Anodizing

3 polishing+Anodizing+Heat treatment

Fig. 1 Schematic diagram of the apparatus for 
anodization.
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After anodization, micro-structures had formed on the 
surface. This did not change after heat-treatment. The 
pore sizes both before and after heat treatment were less 
than 2 µm23). In the elemental analysis by EDS (Fig. 
2d–f), Ca and P were detected on anodized, heat-treated 
titanium, but not polished titanium. It could explain that 
Ca and P ions contained in the electrolyte solution would 
penetrate the inside of the oxide layer19). After the 
biomimetic coating process, morphological and elemental 
analyses of the titanium were also performed (Fig. 3 and 
4). After the first step (Fig. 3a–c), the titanium was 
covered with loose calcium phosphate particles. The 
coated surface appeared globular. These globules would 
be nucleation sites for the growing calcium phosphate 
crystals24). And more Ca and P could detect on the 
titanium surface (Fig. 3d–f) compared to titanium before 
the coating process (Fig. 2d–f). After the second step 
(Fig. 4), the modified titanium surface (Group 2 and 3) 
were homogeneously covered with well-formed calcium 

phosphate crystals; this contrasted with the polished 
titanium surface because modified titanium had higher 
number of nucleation sites due to larger surface area 
compared to polished titanium as shown Fig.3. In 
contrast, the coating on polished titanium formed a 
heterogeneous layer24). This biomimetic coating reaction 
could occur due to an increased solubility of calcium 
phosphate salts with the addition of the acidic gas, 
CO2

25). In addition, the SBF B solution had lower Mg and 
HCO3 ion content than the SBF A solution. These ions 
can inhibit crystallization. Therefore, the second coating 
formed a thick, homogenous calcium phosphate layer 
compared to the first coating24-29). As shown in the EDS 
results, Mg was not detected in the second coating, 
unlike the first coating. Ca and P were increased after 
second coating. And C peak was showed also. The Table 2 
shows the composition of specimen from EDS. 

Figure 5 shows the XRD results of modified titanium 
prior to the biomimetic coating. The anodization process 

Fig. 2 Characteristics of modified titanium. (Left) Field-emission scanning electron microscopy 
images show the surface  morphologies of modified titanium implant models (×5,000): (a) 
Group 1: polished, (b) Group 2: polished and anodized (c) Group 3: polished, anodized, and 
heat-treated. (Right) Electron dispersive spectroscopy analyses identified elements on the 
surfaces of modified titanium: (d) Group 1, (e) Group 2, (f) Group 3.
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induced the titanium to form an anatase phase. Titanium 
and oxygen ion underwent a redox reaction that resulted 
in the formation of a titanium oxide film. The heat-treated 
titanium exhibited both anatase and rutile phases 
together. In addition, Ca3(PO4)2 was also observed. These 
results indicated that heat treatment improved the 
crystallinity of titanium oxide and calcium phosphate 
(Fig. 5)30). In contrast, polished titanium showed only an 
alpha titanium phase (Fig. 5). The phase of surface could 
have influence on accumulation of calcium phosphate. As 
shown Fig. 6, after the biomimetic coating process, 
negatively charged HPO4

2− ions in the solution were 
chemically absorbed into the CaTiO3 surface (Fig. 6). 
TiO2 on Ti surface can be transformed in to CaTiO3 which 
is in contact aqueous solution containing sufficient Ca, at 
a suitable pH and temperature. This chemical bond is 
capable of strengthening the adhesion between the 
apatite and CaTiO3 surfaces31). In addition, titanium 

with an anatase and/or rutile crystal structure also 
showed excellent apatite-forming ability22,25,32). In other 
words, the apatite-forming ability was related to the 
crystallinity of the titanium surface. The anodized 
titanium surface had a lower crystal order compared to 
heat-treated titanium33). Therefore, Fig. 4 showed that 
carbonated apatite formed more readily on the 
heat-treated titanium surface than on the polished 
surfaces. The carbonate was able to substitute for 
phosphate, which results in the transformation of HA in 
to carbonated apatite. This carbonated apatite is similar 
to bone24).  

Release of antibiotic
Figure 7 shows the release of antibiotic from the coated 
titanium surface as a function of time. Most of the loaded 
cefalotin was released during the first day. A burst 
release of antibiotic will influence initial bacterial 

Fig. 3 Characteristics of modified titanium after first biomimetic coating. (Left) Field-emission 
scanning electron microscopy images show the surface morphologies of the titanium after 
the first biomimetic coating (×5,000): (a) Group 1: polished, (b) Group 2: polished and 
anodized, (c) Group 3: polished, anodized, and heat-treated. Electron dispersive 
spectroscopy analyses identified elements on the surfaces of modified titanium after the 
first biomimetic coating: (d) Group 1, (e) Group 2, (f) Group 3.
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Fig. 4 Characteristics of modified titanium after second biomimetic coatings. (Left) Field-emission scanning 
electron microscopy images show the surface morphologies of the titanium after the second biomimetic 
coating (×350, ×5,000): (a, d) Group 1: polished, (b, e) Group 2: polished and anodized, (c, f) Group 3: 
polished, anodized, and heat-treated. Electron dispersive spectroscopy analyses identified elements on the 
surfaces of titanium after the second biomimetic coating: (g) Group 1, (h) Group 2, (i) Group 3.

Table 2 Chemical composition of biomimetic coated titanium

Group

Element composition 
(atm. %)

1 2 3
First biomimetic coating First biomimetic coating First biomimetic coating

Second biomimetic coating Second biomimetic coating Second biomimetic coating

Ti 16.83
11.66

16.22
 5.7

10.92
 4.62

Ca  4.64
12.94

 7.2
20.01

 9.03
23.45

P  5.64
12.31

 5.92
21.99

 8.08
23.98

O 61.00
30.29

63.05
37.99

68.47
16.74

Mg  1.94
      –

 1.52
      –

 1.58
      –

Cl  2.51
 2.31

 3.09
 2.21

 0.57
 2.83

Na  3.95
 2.94

 3.0
 2.41

 1.35
 3.19

C       –
10

      –
10.69

      –
13.2
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colonization. The heat treated titanium (Group 3) 
enhanced the ability of antibiotic to incorporate onto the 
surface, which increased the loading of cefalotin. Because 
the rutile structure of heat-treated titanium played an 
important role in inducing calcium phosphate deposition. 
In addition, the rutile structure allowed lattice matching 
between the titanium and apatite22,25,32). Therefore, as 
the coated layer grew, the deposition of antibiotic on the 
heat-treated titanium might have been accelerated. This 
co-precipitation mechanism was also corroborated by 
Stigter and coworkers. They demonstrated that 

tobramycin had an affinity for calcium phosphate 
surfaces and showed a correlation between the 
concentration of antibiotic in solution and the loading of 
tobramycin onto a calcium phosphate coated surface13). 
In this study, carboxyl group in the chemical structure of 
cefalotin (Fig. 8) would confer strong binding to calcium 
ions; this facilitated the coprecipitation with apatite. In 
addition, the modified titanium (Group 2 and 3) had 
calcium ions on the surface (Fig. 2). Therefore, modified 
titanium could have enhanced the incorporation 
efficiency of cefalotin compared to polished titanium. The 
release mechanism of cefalotin is related to apatite 
dissolution though we didn’t evaluate it yet. So, to 
observe the release rate, weight loss should be measured 
in the future. 

Evaluation of antibacterial activity
Next, antibacterial activity test of coated titanium was 
performed (Fig. 9). The viability of S. mutans was tested 
after a 4-h exposure to each specimen. The CFUs of S. 
mutans decreased after exposure to titanium specimens, 

Fig. 8 Structure of the antibiotic, cefalotin. *Indicates 
the carboxyl group that binds to calcium.

Fig. 5 High resolution X-ray diffraction patterns of 
modified titanium before the biomimetic coating. 
Group 1: polished, Group 2: polished and 
anodized, Group 3: polished, anodized, and heat-
treated.

Fig. 7 Cumulative release of antibiotic from coated 
titanium over time. Group 1: polished; Group 2: 
polished and anodized; Group 3: polished, 
anodized, and heat-treated.

Fig. 6 High resolution X-ray diffraction patterns of 
modified titanium after the second biomimetic 
coating. Group 1: polished, Group 2: polished and 
anodized, Group 3: polished, anodized, and heat-
treated.
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in the following order: uncoated titanium (control) > 
polished, anodized titanium (group 2) > polished titanium 
(group 1) > polished, anodized, and heat-treated titanium 
(group 3). All the experimental groups showed reduced 
CFUs compared to the control group (p<0.05) (Fig. 9). 
However, agar plates for the experimental group 1, 2 and 
3 showed a similar number of S. mutans CFUs (p>0.05) 
(Fig. 10); this might be related to the burst release of 
antibiotic. Thus, all experimental groups had a sufficient 
antibacterial effect against S. mutans in that time that 
corresponded to immediately after surgery. However, it 
is necessary to ensure a sustained antibiotic release from 

the coated surface, because peri-implantitis is slow 
developing5). Also, a sustained antibiotic release may 
improve the safety of the dose and avoid side effects that 
can cause problems16). 

CONCLUSIONS

In this study, cefalotin was co-precipitated with 
carbonated apatite applied with a biomimetic coating 
method. A modified titanium surface increased the 
quantity of antibiotic that could be loaded onto the coated 
surface. Therefore, these results suggested that a 
cefalotin coating applied with a biomimetic coating 
method on modified titanium might be a promising 
material for preventing local post-surgical implant 
infections. However, further study is necessary to ensure 
the cytocompatibility and safety of this material. 
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