RESEARCH COMMUNICATION

Comparing Endoscopy and Upper Gastrointestinal X-ray for Gastric Cancer Screening in South Korea: A Cost-utility Analysis

Hoo-Sun Chang^{1,2}, Eun-Cheol Park^{1,2}, Woojin Chung^{2,3}, Chung Mo Nam¹, Kui Son Choi⁴, Eun Cho^{1,2}, Woo-Hyun Cho^{1,2*}

Abstract

Background: There are limited data evaluating the cost-effectiveness of gastric cancer screening using endoscopy or upper gastrointestinal x-ray in the general population. Objective: To evaluate the costeffectiveness of population-based screening for gastric cancer in South Korea by decision analysis. Methods: A time-dependent Markov model for gastric cancer was constructed for healthy adults 30 years of age and older, and a deterministic sensitivity analysis was performed. Cost-utility analysis with multiple strategies was conducted to compare the costs and effects of 13 different screening alternatives with respect to the following eligibility criteria: age at the beginning of screening, screening interval, and screening method. The main outcome measurement was the incremental cost-effectiveness ratio. Results: The results revealed that annual endoscopic screening from ages 50-80 was the most cost-effective for the male population. In the females, biennial endoscopy screening from ages 50-80 was calculated as the most cost-effective strategy among the 12 screening alternatives. The most cost-effective screening strategy may be adjustable according to the screening costs and the distribution of cancer stage at screening. The limitation was that effectiveness data were obtained from published sources. Conclusions: Using the threshold of \$19,162 per quality-adjusted life year on the basis of the Korean gross domestic product (2008), as suggested by the World Health Organization, endoscopic gastric cancer screening starting at the age of 50 years was highly cost-effective in the Korean population. The national recommendation for gastric cancer screening should consider the starting age of screening, the screening interval, and the screening modality.

Key words: Stomach neoplasms - mass screening - endoscopy - quality-adjusted life years - Korea

Asian Pacific J Cancer Prev, 13, 2721-2728

Introduction

The incidence of gastric cancer has gradually declined, but it remains one of the leading causes of cancer death worldwide (Parkin et al., 2001; Ferlay et al., 2004). In South Korea, the age standardized incidence of gastric cancer is 65.7 per 100,000 people for men and 26.0 per 100,000 people for women, which are among the world's highest incidences (Shin et al., 2007). The 5-year survival rate of early gastric cancer (EGC) exceeds 90% (Kunisaki et al., 2006), but that of metastatic cancer is less than 5% (Yeh et al., 2010). Therefore, the early detection and treatment of gastric cancer are important priorities. In 1996, the first "10-Year Strategy for Cancer Control" was established in Korea, and organized cancer screening for gastric cancer was started as a National Cancer Screening (NCS) program in 1999 (Kim et al., 2011). Currently, the NCS program in Korea recommends biennial gastric cancer screening for people older than

40 years via direct upper-gastrointestinal x-ray (UGI series) or endoscopy (or both) (Kim et al., 2011). The median doubling time of gastric cancer is estimated as 2–3 years (Fujita, 1978). Therefore, the optimal interval of screening for gastric cancer is proposed as less than 3 years (Dan et al., 2006). The annual participation rate for gastric cancer screening in 2002 was 9.6% for men and 12.9% for women, and 5 years later, the rate increased to 18.7% for men and 24.7% for women (Choi, 2009). Only 43% of people screened for gastric cancer in 2007 underwent endoscopy, whereas 57% of people underwent UGI series with low sensitivity for EGC (Choi, 2009) consequently decreasing the effectiveness of EGC detection.

If the gastric cancer screening strategy uses inappropriate methods or does not consider the prevalence or incidence of gastric cancer in the target population, false positivity or false negativity will occasionally occur and can result in unnecessary costs or decreases

¹Department of Preventive Medicine, ²Institute of Health Services Research, ³Graduate School of Public Health, Yonsei University, Seoul, ⁴National Cancer Control Research Institute, National Cancer Center, Goyang, Korea *For correspondence: whcho@yuhs.ac

Hoo-Sun Chang et al

in the cure effect. Establishing a strategic early cancer screening method that considers medical and economical aspects is important for increasing the health of the population and effective allocation of resources. To create an effective early cancer screening strategy, a rational standard considering methods of examination, target ages, ending ages, and period of examination must be established, and the effectiveness of increasing the early cancer screening participation rate and cancer screening must be evaluated and administrated continuously. Korea is the only nation other than Japan to implement mass screening programs for gastric cancer. However, there is a paucity of data evaluating the cost-effectiveness of gastric cancer screening using endoscopy or UGI series for the general population.

This study aimed to explore the cost-effectiveness of various gastric cancer screening programs using endoscopy or UGI series in Korea relative to no screening (investigating only when there are clinical symptoms) and determine the most favorable screening alternative for gastric cancer with regard to starting age and screening interval.

Materials and Methods

Markov model structure

A time-dependent Markov model was used to compare hypothetical cohorts of Korean people in which one was followed without screening and the others underwent different screening strategies for gastric cancer. The perspective for the evaluation was societal, and the time horizon covered the full lifetime or up to the age of 99 years for the patients beginning screening at the age of 30 years. This cohort simulation approach with a cycle length of 1 year was used for running the Markov model. The gastric cancer incidence and mortality due to other causes of death (excluding gastric cancer) were modeled as time-dependent transition probabilities.

Patients moved across 10 health states. These health states were (1) asymptomatic healthy, (2) test-positive EGC, (3) test-negative EGC, (4) symptom-positive EGC, (5) symptom-negative EGC, (6) test-positive advanced gastric cancer (AGC), (7) test-negative AGC, (8) symptom-positive AGC, (9) symptom-negative AGC, and (10) dead. The probability of a patient's transition from one state to another state each year was obtained from previously published studies. According to these studies, the median duration of remaining in the early stage is approximately 44 months, and the cumulative 5-year risk for progressing from EGC to AGC is 63% (Tsukuma et al., 2000). One of the assumptions for the screening was that endoscopy and UGI series would make it possible to capture a sizable amount of cancer cases that would otherwise have gone undiagnosed until alarming symptoms developed. Thus, the model needed to incorporate an estimate of sojourn time when the cancer is screen-detectable but displays no clinical symptoms. We assumed a sojourn time of about 5 years from the previous literature (Tsukuma et al., 2000; Hamashima et al., 2006;).

Alternative screening programs

Because there are two available screening methods (endoscopy and UGI series) for gastric cancer in Korea, we considered different screening alternatives with regard to the following eligibility criteria: age at the beginning of screening and the interval between two screenings. All combinations of starting ages (30, 40, or 50 years with an ending age of 80 years) and screening intervals (1 and 2 years) were considered, giving 12 different screening alternatives in addition to the noscreening option. The screening was stopped when the gastric cancer was detected, a participant died, or participants reached the age of 80 years.

Major assumptions

The incidence of gastric cancer is assumed to be similar between the screened and unscreened groups (Tsubono and Nishino, 2000). In the screened pathway, suspicious lesions detected by endoscopy were biopsied. If there were suspicious lesions in UGI series, then those people were followed by endoscopy and biopsied on another screening day.

The overall mortality and gastric cancer mortality were estimated using the vital statistics of Korea for 2008 (Korea National Statistical Office, 2010). Patients who survived for 5 years after undergoing EGC treatment are assumed to have the same age- and gender-specific death rates as healthy people. We used the tunnel state to reflect the probability applied differently throughout the period (Hawkins et al., 2005). Stage-specific survival was applied differently according to the receipt of treatment. When the person did not undergo treatment due to undetected gastric cancer, his or her mortality was decided by the stage-specific survival rate in the unscreened population from the published data (Babazono & Hillman, 1995; Kubota et al., 2000; Kunisaki et al., 2006). The treatment costs of gastric cancer were determined according to the cancer stage. All patients who were diagnosed with gastric cancer were assumed to receive the same treatment, to pay the same treatment price, and to not participate in future gastric cancer screening.

Incidence and prevalence rates

The gender-specific gastric cancer incidence of the population was obtained from Korea Central Cancer Registry data reported in 2008 (Korea Central Cancer Registry, 2010). Mortality according to age and gender was assessed using National Statistical Office 2008 data (Korea National Statistical Office, 2010). The stage distribution and the survival outcomes in the unscreened population were projected on the basis of local studies (Hansson et al., 1999; Kubota et al., 2000; Dan et al., 2006; Kunisaki et al., 2006; Miyamoto et al., 2007; Nam et al., 2009). The corresponding outcomes for the

DOI:http://dx.doi.org/10.7314/APJCP.2012.13.6.2721 Endoscopy and X-ray Gastric Cancer Screening in South Korea: A Cost-utility Analysis

Strategy of Screening for Gastric Cancer (Male)	Cost (\$)	Incremental Cost (\$)	Effectiveness (Utility)	Incremental Effectiveness	C/E	Incremental C/E	
		Cost (\$)		Effectiveness		(ICER)	
M_30_99_No screening	1,619		22.262		72.758		
M_50_80_2yr_Endoscopy	1,815	196	22.3	0.038	81.422	5,116	
M_50_80_2yr_UGI	1,836	20	22.297	-0.003	82.35	(Dominated)	
M_50_80_1yr_Endoscopy	1,975	159	22.333	0.033	88.457	4,820	
M_40_80_2yr_Endoscopy	1,977	2	22.308	-0.025	88.663	(Dominated)	
M_50_80_1yr_UGI	2,009	34	22.324	-0.009	90.037	(Dominated)	
M_40_80_2yr_UGI	2,017	42	22.305	-0.029	90.466	(Dominated)	
M_30_80_2yr_Endoscopy	2,206	230	22.313	-0.02	98.878	(Dominated)	
M_30_80_2yr_UGI	2,278	303	22.307	-0.026	102.143	(Dominated)	
M_40_80_1yr_Endoscopy	2,295	320	22.349	0.016	102.721	20,490	
M_40_80_1yr_UGI	2,369	74	22.337	-0.011	106.087	(Dominated)	
M_30_80_1yr_Endoscopy	2,760	464	22.355	0.006	123.485	81,294	
M_30_80_1yr_UGI	2,890	129	22.342	-0.012	129.364	(Dominated)	
Without dominated options (s		ded)					
M_30_99_No screening	1,619		22.262		72.758		
M_50_80_1yr_Endoscopy	1,975	355	22.333	0.071	88.457	4,979	
M_40_80_1yr_Endoscopy	2,295	320	22.349	0.016	102.721	20,490	
M_30_80_1yr_Endoscopy	2,760	464	22.355	0.006	123.485	81,294	
Strategy of Screening for	Cost (\$)	Incremental	Effectiveness	Incremental	C/E	Incremental C/E	
Gastric Cancer (Female)		Cost (\$)	(Utility)	Effectiveness		(ICER)	
F_30_99_No screening	774		23.81		32.515		
F_50_80_2yr_Endoscopy	977	202	23.828	0.018	41.005	11,378	
F_50_80_2yr_UGI	999	22	23.827	-0.002	41.936	(Dominated)	
F_40_80_2yr_Endoscopy	1,109	132	23.834	0.006	46.543	21,014	
F_40_80_2yr_UGI	1,146	37	23.832	-0.002	48.121	(Dominated)	
F_50_80_1yr_Endoscopy	1,164	55	23.844	0.009	48.839	6,073	
F_50_80_1yr_UGI	1,206	42	23.839	-0.004	50.624	(Dominated)	
F_30_80_2yr_Endoscopy	1,290	125	23.84	-0.004	54.13	(Dominated)	
F_30_80_2yr_UGI	1,352	187	23.836	-0.007	56.722	(Dominated)	
F_40_80_1yr_Endoscopy	1,425	261	23.855	0.012	59.766	22,283	
F_40_80_1yr_UGI	1,499	73	23.849	-0.006	62.871	(Dominated)	
F_30_80_1yr_Endoscopy	1,791	365	23.863	0.007	75.055	50,033	
F_30_80_1yr_UGI	1,908	117	23.856	-0.007	80.004	(Dominated)	
Without dominated options (s	imple or exten	ded)				. ,	
F_30_99_No screening	774	-	23.81		32.515		
F_50_80_2yr_Endoscopy	977	202	23.828	0.018	41.005	11,378	
F_50_80_1yr_Endoscopy	1,164	187	23.844	0.015	48.839	12,188	
F_40_80_1yr_Endoscopy	1,425	261	23.855	0.012	59.766	22,283	
F_30_80_1yr_Endoscopy	1,791	365	23.863	0.007	75.055	50,033	
<u>C/E, cost effectiveness ratio; I</u>	CER, increme	ntal cost effectiv	eness ratio; UGI,	upper-gastrointest	inal x-ray.		

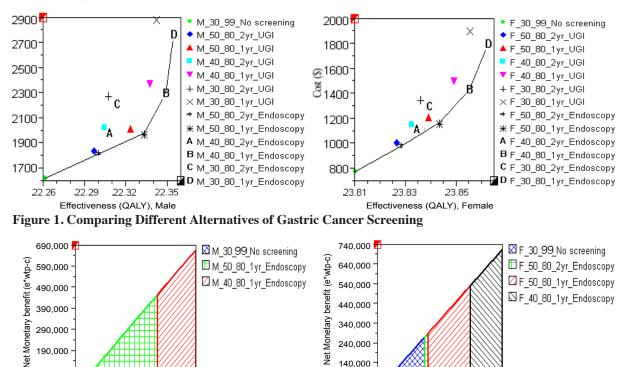
screened population were projected from clinical studies conducted in Korea or Japan (Kubota et al., 2000; Han et al., 2003; Nam et al., 2009).

Characteristics of the screening tests

Table 1. Results of the Base Case Analysis

Every person not previously diagnosed with gastric cancer was eligible for screening. Non-participants in screening and people with false-negative screening results were assumed to be diagnosed after the sojourn time had passed, and were more likely to be diagnosed with AGC. Based on public cancer screening data in Korea, the sensitivities of UGI series and endoscopy were 42.1 and 59%, respectively, and their specificities were 89.8 and 96.3%, respectively (Lee et al., 2010). However, a study of private screening programs reported the sensitivity of endoscopy was 85.4–98.8% and the

specificity was 100% (Yeun, 1992). Therefore, we analyzed the sensitivity and specificity of each test by using the recent participation rates of private programs (37.1%) and public programs (62.9%) (Yeun, 1992; National Cancer Center, 2008; Lee et al., 2010).


Cost and effectiveness

Costs were categorized as screening costs, initial treatment costs (first year), follow-up treatment costs (2–5 years, after 5 years), and terminal care costs (Park, 2006). Screening costs included direct medical costs, nonmedical direct costs, incurred transport costs, and costs related to lost productivity. The treatment cost data for this study were obtained from a survey study in Korea (Table 1). The treatment costs by stage were assumed to be same for the unscreened and screened

Asian Pacific Journal of Cancer Prevention, Vol 13, 2012 2723

Hoo-Sun Chang et al

190 000

Net 140,000 90,000 40,000 -10,000 10,000 20,000 10,000 20,000 30.000 0 Willingness-to-pay (\$), Male Willingness-to-pay (\$), Female Figure 2. Gastric Cancer Screening Strategy Graph on Willingness-to-Pay

populations. All estimated costs are expressed using an exchange rate of 1103 Korean won to 1 United States dollar, which was the annual exchange rate in 2008. To capture both the mortality and morbidity outcomes due to gastric cancer screening, health improvement was measured in quality-adjusted life years (QALYs). The quality of life according to gastric cancer stage was obtained from several published articles (Dan et al., 2006; Hanmer et al., 2006). The survival rate according to stage was calculated using the 5- or 10-year survival rates from a synthesis of published studies (Babazono & Hillman, 1995; Kim et al., 2000; Kunisaki et al., 2006; Miyamoto et al., 2007).

Statistics and sensitivity analysis

Comparisons were made between the reference strategy of no screening for the population and different screening strategies using endoscopy or UGI series. A discount rate of 3% for costs and effects was applied to the analyses. Final outcome measures were incremental cost-effectiveness ratios (ICERs) expressed as \$/QALY. All of the base case estimates including the sensitivity and specificity of each screening program were varied over a wide range during the sensitivity analyses. The ranges for sensitivity analysis were based on the range of variables in all relevant studies. When published data were not available, base case estimates were halved and doubled, with additional adjustment made by author consensus. One-way sensitivity analysis was applied to the base case population of Korea to identify the factors that had the greatest impact on cost-effectiveness and to

determine the impact of assumptions and estimations for all variables used. Analysis was performed using Data 2009 (Treeage Software Inc, Williamstown, MA).

30,000

Results

240.000

Base case results

The 1-year-interval UGI series screening strategy from ages 30 to 80, calculated through the Markov model, resulted in the highest cost of \$2890 for males and \$1908 for females, and utility was highest for annual endoscopy from ages 30 to 80 with 22.355 QALY for males and 23.863 QALY for females (Table 1).

Compared to the no screening alternative, the ICER of the endoscopic screening alternative with a 2-year interval from ages 40 to 80 for the male population was \$7673/QALY. Additionally, compared to the no screening alternative, the ICER of UGI series from ages 40 to 80 with a 2-year interval was estimated to be \$9292/QALY for the male population. The cost-effectiveness results are displayed graphically in Figure 1.

Based on commonly accepted thresholds of society's willingness to pay per QALY of \$19,162, the endoscopic gastric cancer screening at the starting age of 50 years may be highly cost-effective in the Korean population. Comparing the net health benefit among these strategies, annual endoscopic screening for Korean men from ages 50 to 80 was the most cost-effective strategy for the defined willingness-to-pay threshold (Figure 2). The ICER of this strategy over no screening was \$4979/ QALY.

DOI:http://dx.doi.org/10.7314/APJCP.2012.13.6.2721

Endoscopy and X-ray Gastric Cancer Screening in South Korea: A Cost-utility Analysis

Table 3. Sensitivity Analysis	(Korean Population Screening)
-------------------------------	-------------------------------

S	Sensitivity analysis range		50 to 80 years, Endoscopy ICER (Male)50 to 80 years, Endoscopy ICER (Female)							
			2-yr i	nterval 1yr in		nterval	2-yr interval		1-yr interval	
-	Min	Max	Min	Max	Min	Max	Min	Max	Min	Max
Endoscopy + Consultation cost	(\$) 19.68	78.72	(Ext Dom)	6,558	3,307	18,695	7,618	14,733	7,828	17,968
UGI + Constulation cost (\$)	18.57	74.28	(Ext Dom)	(Ext Dom)	8,303	4,979	(Ext Dom) 11,378	18,9181	2,188
Biopsy cost (\$)	12.27	49.08	(Ext Dom)	(Ext Dom)	4,955	5,028	11,328	11,480	12,122	12,321
EGC first year treatment cost (\$) 2,996	11,982	(Ext Dom)	(Ext Dom)	4,595	5,748	11,050	12,036	11,865	12,836
EGC first year productivity loss	cost (\$) 0	9,301	(Ext Dom)	(Ext Dom)	3,786	4,979	10,358	11,378	11,183	12,188
EGC 2-5 year treatment cost (\$)	369	1,476	(Ext Dom)	(Ext Dom)	4,853	5,232	11,268	11,599	12,079	12,407
EGC 2-5 year productivity loss	cost (\$) 0	3,825	(Ext Dom)	(Ext Dom)	3,671	4,979	10,236	11,378	11,058	12,188
AGC first year treatment cost (\$) 5,817	23,270	(Ext Dom)	(Ext Dom)	5,382	4,174	11,688	10,759	12,582	11,400
AGC first year productivity loss	cost (\$) 0	18,773	6,268	(Ext Dom)	6,292	4,979	12,378	11,378	13,460	12,188
AGC 2-5 year treatment cost (\$)) 1,690	6,760	(Ext Dom)	(Ext Dom)	5,202	4,535	11,550	11,035	12,416	11,733
AGC 2-5 year productivity loss	cost (\$) 0	10,398	6,303	(Ext Dom)	6,400	4,979	12,435	11,378	13,590	12,188
After 5 year treament cost (\$)	636	2,543	(Ext Dom)	(Ext Dom)	5,037	4,864	11,416	11,303	12,261	12,042
After 5 year productivity loss co	ost (\$) 0	5,136	(Ext Dom)	(Ext Dom)	5,446	4,979	11,683	11,378	12,778	12,188
Treatment cost for last one year	(\$) 3,980	15,921	(Ext Dom)	(Ext Dom)	5,261	4,417	11,639	10,857	12,423	11,718
Productivity loss cost for last 1	year (male) 0	8,049	(Ext Dom)	(Ext Dom)	5,548	4,979	-	-	-	-
Productivity loss cost for last 1	year female) 0	4,829	-	-	-	-	11,695	11,378	12,474	12,188
Endoscopy sensitivity (%)	59.00%	98.80%	(Ext Dom)	(Ext Dom)	5,241	4,492	11,945	(Ext Dom)	13,812	10,267
Endoscopy specificity (%)	96.30%	100.00%	(Ext Dom)	(Ext Dom)	5,008	4,932	11,444	11,271	12,264	12,064
UGI sensitivity (%)	42.10%	90.80%	(Ext Dom)	(Ext Dom)	4,979	4,979	11,378	11,378	12,188	12,188
UGI specificity (%)	81.20%	90.10%	(Ext Dom)	(Ext Dom)	4,979	4,979	11,378	11,378	12,188	12,188
Endoscopy compliance (%)	45.00%	85.00%	5,234	(Ext Dom)	5,273	4,707	11,405	11,354	12,507	11,914
UCI compliance (%)	45.00%	85.00%	(Ext Dom)	(Ext Dom)	4,979	4,979	11,378	11,378	12,188	12,188
5 yr progression risk from EGC	to AGC48.10%	77.90%	(Ext Dom)	(Ext Dom)	4,958	5,067	11,575	11,277	12,271	12,123
No screen : EGC proportion	7%	39%	(Ext Dom)	(Ext Dom)	2,067	5,237	7,475	11,714	7,592	12,606
No screen : AGC proportion	61%	93%	(Ext Dom)	(Ext Dom)	5,237	2,067	11,714	7,475	12,606	7,592
Screen : EGC proportion	52%	86%	15,349	(Ext Dom)	16,021	4,622	25,762	10,884	29,096	11,640
Screen : AGC proportion	14%	48%	(Ext Dom)	15,349	4,622	16,021	10,884	25,762	11,640	29,096
No screen : survival data (EGC)	78.2%(5yrs)9	2.6%(5yrs) (Ext Dom)	(Ext Dom)	4,729	4,981	11,035	11,381	11,418	12,194
No screen : survival data (AGC)) 24.5%(5yrs)3	5.1%(10yr	s)(Ext Dom)	(Ext Dom)	6,290	4,577	11,912	11,243	12,647	12,082
Screen : survival data (EGC)	93.9%(5yrs)9	8.4%(5yrs) (Ext Dom)	(Ext Dom)	5,099	4,845	11,595	11,134	12,481	11,862
Screen : survival data (AGC)	60.1%(5yrs)6	1.8%(10yr	s)(Ext Dom)	(Ext Dom)	4,817	5,393	11,322	11,507	12,155	12,260
EGC symptom develop probabil		40%		(Ext Dom)		5,149	10,655	11,784	11,302	12,684
AGC symptom develop probabi		90%	(Ext Dom)	(Ext Dom)	5,424	2,776	11,705	9,759	12,528	10,526
Normal utility (QALY)	0.782	0.918	. ,	(Ext Dom)		4,979	11,378	11,378	12,188	12,188
EGC utility (QALY)	0.65	0.85	· · · · · · · · · · · · · · · · · · ·	(Ext Dom)	· ·	4,698	14,817	10,755	16,009	11,502
AGC utility (QALY)	0.17	0.7	· · · · · · · · · · · · · · · · · · ·	(Ext Dom)	,	5,483	10,213	12,300	10,729	13,383
Discount rate (%)	1%	5%	· · · · · · · · · · · · · · · · · · ·	(Ext Dom)	· ·	6,791	8,393	15,141	8,922	16,322

Note: Sensitivity analysis was performed to cover the widest reasonable range of variables in the literature; ICER, incremental cost effectiveness ratio; Min, minimum value; Max, maximum value; Ext Dom, extended dominated; UGI, upper-gastrointestinal x-ray; EGC, early gastric cancer; AGC, advanced gastric cancer; QALY, quality-adjusted life year.

The cost for a woman in the unscreened population was \$774, and the effect was 23.810 QALY. Compared to the no screening alternative, the ICER of the endoscopic screening alternative with a 2-year interval from the age of 40 to 80 for females, which is one of the national guidelines for gastric cancer screening alternative, the ICER of UGI series from the age of 40 to 80 with a 2-year interval for the female population was estimated to be \$16,844/QALY. The 2-year-interval endoscopic screening of Korean women from the age of 50 to 80 was the most cost-effective screening strategy for the defined willingness-to-pay threshold (Figure 2). The ICER of this strategy over no screening was \$11,378/QALY.

Sensitivity analysis

One-way sensitivity analyses were performed with a maximum value and minimum value for each parameter, with discounting rates of 1 and 5% and varying the screening and treatment costs by 50 or 200%.

Cost-effectiveness was most sensitive to the cost of endoscopic screening or UGI series and the distribution of cancer stage at screening (Table 2). When the cost of endoscopic screening was doubled, the most costeffective alternative for males was UGI series screening with a 2-year interval from the age of 50 to 80, and compared to the no screening alternative, the ICER of that strategy was \$6558/QALY. In the same condition for females, the UGI series screening with a 2-year interval from the age of 50 to 80 was the most cost-effective alternative, and the ICER of this strategy was \$14,733/ QALY compared to the no screening alternative. The cost-effectiveness ratio of gastric cancer screening from ages 50 to 80 using endoscopy appeared to be acceptable as a public policy.

Discussion

The NCS program was started in Korea under an initiative of the Ministry of Health and Welfare (Ministry

Hoo-Sun Chang et al

of Health and Welfare Republic of Korea, 2004). However, there is a paucity of information regarding the cost-effectiveness of a mass screening program for gastric cancer using endoscopy or UGI series. Therefore, this research evaluated the cost and utility of mass gastric cancer screening programs to help plan gastric cancer screening strategies.

World Health Organization choosing interventions that are cost effective (WHO-CHOICE) suggested the very cost-effective threshold would be less than gross domestic product income per capita in relevant population(World Health Organization, 2001). Using this threshold of \$19,162 per person in Korea (2008) (International Monetary Fund (IMF), 2011), the mass screening strategy of endoscopy for both men and women over 50 is very cost-effective in Korea. In our base case model, we demonstrated that gastric cancer screening from the age of 50 to 80 in males via annual endoscopy is the most cost-effective with an ICER of \$4979/QALY. The ICER of the screening strategy for women from the age of 50 to 80 using biennial endoscopy was \$11,378/ QALY. Based on our results, the optimal age (40 years old) to initiate screening should be reconsidered, as the cost-effectiveness was improved for older people because the incidence of gastric cancer increases rapidly with increasing age.

A previous study in Japan demonstrated that an indirect X-ray method (\$29) was more cost-effective than direct radiography (\$96) and endoscopy (\$80) in 1995 (Babazono & Hillman, 1995). This study also reported that screening 40-year-old men and women was less cost-effective than beginning screening at the age of 50, consisting with our findings. The cost of endoscopy may be different in different countries: \$80 in Japan (1995), approximately \$150 (2006) in Singapore, and approximately \$300 (2006) in the USA. These costs were almost 3- to 9-fold higher than that in Korea. Endoscopic screening exhibited more sensitivity and specificity than UGI series in Korea, with a positive predictive value of 98-99.8% (Kim et al., 2000). Although UGI series may have clinical utility as an alternative method of gastric cancer screening and endoscopy has a weakness in terms of discomfort during the procedure, UGI series strategies were dominated by endoscopic screening strategies in our results. Thus, in our model, endoscopy is more costeffective than UGI series despite their approximately equal costs. Endoscopy appears to be optimal as the first-line method for gastric cancer screening in Korea. Our results recommend that the current national guideline for the use of UGI series to screen people 40 years old or older should be re-evaluated in Korea.

The costs, availability, and accessibility of endoscopy are very different in different countries. Although endoscopy is widely available in major cities in China, its availability and accessibility are limited in rural areas (Leung et al., 2008). By contrast, mass screening using endoscopy was reported to be unfeasible in Japan because of a lack of experienced endoscopists and the insufficient governmental support system (Leung et al., 2008). A study in Singapore suggested endoscopic screening only for moderate-to-high-risk groups (Yeh et al., 2010). The cost of endoscopy is the major modifiable factor that affects the cost-effectiveness of a screening program. As this study is a country-specific economic evaluation, the interpretation and generalization of our results to other countries should be cautiously approached. Whether such mass screening programs for gastric cancer using endoscopy or UGI series are cost-effective and actually reduce the mortality of gastric cancer in other countries remains to be researched.

We made conservative estimates to decrease the bias relative to the screened group. For example, previous research reported that repetitive cancer screening increases the likelihood of detecting EGC; however, we applied the same gastric cancer stage distribution in the screening arms. In reality, some cases of EGC can be treated via endoscopic mucosal resection, which would result in lower costs and a higher quality of life (Probst et al., 2009). The costs of treatment according to cancer stage were assumed to be similar without considering whether screening was performed.

Several limitations for this research should be mentioned. First, the results of this study were produced by a computer simulation program, which uses many assumptions. For instance, effectiveness data were obtained from reports from others (Dan et al., 2006; Hanmer et al., 2006). However, to qualify the uncertainty of the utility of the health status, we analyzed sensitivity over a wide range of effectiveness. Second, the infrastructure for mass gastric cancer screening is already in place in Korea, so the cost of installing a screening program was not considered in this research. However, if a new gastric cancer screening program is implemented by a government, the cost of establishing the basic infrastructure should be considered. In addition, the cost of lost productivity per case of gastric cancer should be considered from the societal or national perspectives of the patient group. In this study, the outcomes were not considered heterogeneous in regards to economic status, which requires additional study. Finally, the additional changes in the cost-effectiveness due to examining the incidence of reflux esophagitis, gastritis, and Helicobacter pylori infection (Gersonet al., 2004) which can be detected coincidently by these gastric cancer screening strategies, were not considered. However, we do not believe that including these factors would significantly change the risks according to the use of screening.

Screening for gastric cancer using endoscopy from ages 50 to 80 may be very cost-effective in the Korean population. The cost-effectiveness of gastric cancer screening was most sensitive to the cost of endoscopic screening and the distribution of cancer stage diagnosis. It is important that policymakers monitor the costeffectiveness of several alternatives according to gender, starting age of screening, screening interval, and screening method. Additional studies are needed to confirm these findings before a widespread change in clinical practice can be recommended.

References

- Babazono A, Hillman AL (1995). Declining cost-effectiveness of screening for disease. The case of gastric cancer in Japan. Int J Technology Assess Health Care, 11, 354-64.
- Choi IJ (2009). Gastric cancer screening and diagnosis. *Korean J Gastroenterol*, **54**, 67-76.
- Dan YY, So JB, Yeoh KG (2006). Endoscopic screening for gastric cancer. *Clin Gastroenterol Hepatol*, 4, 709-16.
- Ferlay J, Bray F, Pisani P, et al (2004). Cancer incidence, mortality and prevalence worldwide (2.0 ed.): Lyon: IARC Press.
- Fujita S (1978). Biology of early gastric carcinoma. Pathol Res Pract, 163, 297-309.
- Gerson LB, Groeneveld PW, Triadafilopoulos G. (2004). Cost-effectiveness model of endoscopic screening and surveillance in patients with gastroesophageal reflux disease. *Clin Gastroenterol Hepatol*, **2**, 868-79.
- Gold MR, Franks P, McCoy KI, et al (1998). Toward consistency in cost-utility analyses: using national measures to create condition-specific values. *Medical Care*, **36**, 778-92.
- Hamashima C, Sobue T, Muramatsu Y, et al (2006). Comparison of observed and expected numbers of detected cancers in the research center for cancer prevention and screening program. *Jpn J Clin Oncol*, **36**, 301-8.
- Han JY, Son H, Lee WC, et al (2003). The correlation between gastric cancer screening method and the clinicopathologic features of gastric cancer. *Med Oncol*, **20**, 265-9.
- Hanmer J, Lawrence W F, Anderson J P, et al (2006). Report of nationally representative values for the noninstitutionalized US adult population for 7 healthrelated quality-of-life scores. *Medical Decision Making*, 26, 391-400.
- Hansson L E, Sparen P, Nyren O (1999). Survival in stomach cancer is improving: results of a nationwide population-based Swedish study. *Annals of Surgery*, **230**, 162-9.
- Hawkins N, Scupher M, Epstein D (2005). Cost-effectiveness analysis of treatments for chronic disease: Using R to incorporate time dependency of treatment response. *Medical Decision Making*, **25**, 511-9.
- International Monetary Fund (IMF) (2011). World Economic Outlook Databases, World Economic and Financial Surveys. September 2011. from http://www.imf.org/ external/pubs/ft/weo/2011/02/weodata/download.aspx
- Kim H-J (2008). The survival rate by cancer stage (Cancer center, Yonsei University). Retrieved November 11, 2008, from http://news.donga.com/3/all/20081111/8655819/1
- Kim J-W, Ju J-S, Kim J-M, et al (2010). The Medical Cost and Utilization of Cancer From the Diagnosis to the Death
 2001~2005 (In Korean): Health Insurance Reiview Agencyo. Document Number)
- Kim S Y, Kim S G, Park J H, et al (2009). Costs of initial cancer care and its affecting factors. *J Prev Med Public Hlth*, **42**, 43-250 (in Korean).
- Kim Y, Jun J K, Choi K S, et al (2011). Overview of the national cancer screening programme and the cancer screening status in Korea. *Asian Pac J Cancer Prev*, **12**, 725-30.

- Kim Y S, Park H A, Kim B S, et al (2000) Efficacy of screening for gastric cancer in a Korean adult population: a case-control study. *J Korean Med Sci*, **15**, 510-5.
- Korea Central Cancer Registry. (2010). Annual report of cancer statistics in Korea in 2008: Ministry of Health and Welfare, National Cancer Center, Korea Central Cancer Registry.
- Korea National Statistical Office (2010). Annual Report on the Vital Statistics (2008). Seoul: Korea National Statistics Office.
- Kubota, H, Kotoh T, Masunaga R, et al(2000). Impact of screening survey of gastric cancer on clinicopathological features and survival: retrospective study at a single institution. Surgery, 128, 41-47.
- Kunisaki C, Ishino J, Nakajima S, et al(2006). Outcomes of mass screening for gastric carcinoma. Ann Surgical Oncol, 13, 221-228.
- Lee H Y, Park E C, Jun J K, et al(2010). Comparing upper gastrointestinal X-ray and endoscopy for gastric cancer diagnosis in Korea. *World J Gastroenterol*, **16**, 245-50.
- Leung W K, Wu M S, Kakugawa Y, et al(2008). Screening for gastric cancer in Asia: current evidence and practice. *Lancet Oncol*, **9**, 279-87.
- Maconi G, Manes G, Porro G B (2008). Role of symptoms in diagnosis and outcome of gastric cancer. World J Gastroenterol, 14, 1149-1155.
- Ministry of Health and Welfare Republic of Korea. (2004). National Cancer Control Guideline. Seoul: Ministry of Health and Welfare.
- Miyamoto A, Kuriyama S, Nishino Y, et al (2007). Lower risk of death from gastric cancer among participants of gastric cancer screening in Japan: a population-based cohort study. *Prev Med*, **44**, 12-19.
- Nam Jun-Sik (2010). National Cancer Screening (In Korean). J Korean Med Assoc, **53**, 386-91.
- Nam S Y, Choi I J, Park K W, et al (2009). Effect of repeated endoscopic screening on the incidence and treatment of gastric cancer in health screenees. *Eur J Gastroenterol Hepatol*, **21**, 855-60.
- National Cancer Center. (2008). National Cancer Screening Participation. Goyang: National Cancer Center.
- National Cancer Information Center (2011). The survey of cancer screening participation behavior (2010) (In Korean). Increased participation rate for gastric cancer screening, 2011, from http://cancerinfo.egloos. com/1984403
- Park EC (2006). The efficacy of cancer screening and cancer cost (2006). Goyang: National Cancer Centero. Document Number)
- Parkin DM, Bray F, Ferlay J, et al (2001). Estimating the world cancer burden: Globocan 2000. Int J Cancer, 94, 153-6.
- Probst A, Golger D, Arnholdt H, et al (2009). Endoscopic submucosal dissection of early cancers, flat adenomas, and submucosal tumors in the gastrointestinal tract. *Clin Gastroenterol Hepatol*, 7, 149-55.
- Shin H R, Jung K W, Won Y J, et al (2007). National cancer incidence for the year 2002 in Korea. *Cancer Res Treat*, 39, 139-49.
- Tsubono Y, Nishino Y, Tsuji I, et al (2000). Screening for Gastric Cancer in Miyagi, Japan: Evaluation with a population-based cancer registry. *Asian Pac J Cancer Prev*, **1**, 57-60.
- Tsukuma H, Oshima A, Narahara, H, et al (2000). Natural

Asian Pacific Journal of Cancer Prevention, Vol 13, 2012 2727

Hoo-Sun Chang et al

history of early gastric cancer: a non-concurrent, long term, follow up study. *Gut*, **47**, 618-21.

- Wang S J, Fuller C D, Choi M, et al (2008). A costeffectiveness analysis of adjuvant chemoradiotherapy for resected gastric cancer. *Gastrointestinal Cancer Res*, 2, 57-63.
- World Health Organization (2001). Report of the Commission on Macroeconomics and Health : investing in health for economic development. Geneva: World Health Organization.
- Yeh, JM, Ho W, Hur C (2010). Cost-effectiveness of endoscopic surveillance of gastric ulcers to improve survival. *Gastrointestinal Endoscopy*, **72**, 33-43.
- Yeh JM, Hur C, Kuntz K M, et al (2010). Cost-effectiveness of treatment and endoscopic surveillance of precancerous lesions to prevent gastric cancer. *Cancer*, **116**, 2941-53.
- Yeun J M (1992). Diagnosis and endoscopic treatment of gastric cancer. J Korean Med Assoc, 7, 834-42.