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Abstract

Biological age may better predict health outcomes than chronological age by capturing individual heterogeneity in aging. We investigated
whether accelerated spine aging, estimated from DXA vertebral fracture assessment (VFA) using deep learning, predicts fracture and mortality
independently of age, vertebral fracture (VF), and BMD. A convolutional neural network model to estimate age from lateral spine radiographs
was trained in a Korean cohort (VERTE-X, n =10341). Among 27 601 adults aged >50 who underwent DXA VFA in Manitoba, Canada (2010-
2023), the pre-trained model was fine-tuned to DXA VFA images using 20% randomly sampled subset. Among remaining 80% set, test set
included 8810 individuals who completed DXA before 2017 as the outcomes were ascertained through 2018. Predicted spine age difference
(PAD = spine age-chronological age) was calculated in the test set. During a mean follow-up of 3.9 yr, 899 incident fractures and 969 deaths
occurred. Spine age positively correlated with chronological age (r=0.89), with a mean difference of 0.0 yr (SD = 3.4). Factors associated with
higher PAD include VFs (+1.02 yr), nonvertebral fracture history (+0.22), generalized spine structural artifacts (+1.45), smoking (+1.20), and lower
FN BMD (+0.60 per T-score decrement), collectively explaining 66% of PAD variance. Each SD increase in PAD was associated with higher risk
of any (adjusted hazard ratio=1.11), nonvertebral (1.10), major osteoporotic (1.12), and hip fracture (1.25), and mortality (1.12), independent of
covariates (all p <.05). In summary, accelerated spine aging detected from DXA VFA predicts fracture and mortality risk independently of age,
clinical risk factors, VF, spine structural artifacts, and BMD in individuals at high risk of fracture, supporting its potential to enhance fracture risk
assessment.
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Lay Summary

This study investigated whether accelerated spine aging, estimated from DXA vertebral fracture assessment (VFA) using deep learning, predicts
fracture and mortality in 27 6071 adults aged >50 who underwent DXA VFA in Manitoba, Canada. The accelerated spine age was associated
with greater fracture risk and mortality, independent of chronological age, clinical risk factors, prevalent vertebral fracture (VF), spine structural
artifacts, and FN BMD, supporting its potential to enhance fracture risk assessment.

Introduction

Aging is a major risk factor that drives the increase in frac-
ture risk and mortality.'~3 The association between age and
fracture remains independent after adjustment for strong pre-
dictors, such as BMD, at the hip or spine.*~® Based on
the observation that individuals do not age at the same
pace in functional or physiological aspects, biological age

is increasingly thought to be a more potent risk factor for
various health outcomes than chronological age.”>
Measurements of biological age have been developed using
diverse data, including clinical phenotypes, epigenomic, or
transcriptomic profiles.”>!? Studies using image data, such as
retinal photographs or facial images, to estimate the biological
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age of various organs and systems have shown promising
results.'!»12 To enhance fracture risk assessment, a strategy
to utilize lateral spine radiographs or DXA vertebral frac-
ture assessment (DXA VFA) images as a source to estimate
biological age could have a clinical advantage, as these are
widely used in the standard screening and assessment process
for osteoporosis.'3

We developed a convolutional neural network (CNN)
model to estimate spine age using a large Korean lateral
spine radiograph database. Accelerated spine age (higher
predicted age difference (PAD) between spine age and
chronological age) was associated with a higher risk of
fracture and mortality in a cohort of community-dwelling
older Korean adults.'* As an extension of these findings, we
hypothesized that the CNN model could capture common
features of accelerated spine aging that are related to fracture
and mortality risk in populations with different ethnicities
and image modalities. If proven, this would strengthen the
generalizability of the CNN model in detecting accelerated
aging across individuals of various ethnicities, while providing
insight into fundamental features of musculoskeletal aging in
spine images.

In this study, we investigated the association of accelerated
spine age, estimated from DXA VFA images, with fracture
and mortality risk in individuals aged 50 yr or older who
underwent routine DXA testing through the Manitoba BMD
Program.

Materials and methods

Manitoba BMD Registry

The Manitoba BMD Registry maintains population-based
data of all examinations covering clinical DXA services for the
Province of Manitoba, Canada.'® Vertebral fracture assess-
ment testing has been included in DXA assessment (Lunar
Prodigy or iDXA, GE Healthcare) since 2010 for individuals
who had T-score of <—1.5 (minimum at the LS, TH, or FN)
and (1) age >70 yr; (2) age 50-69 yr; and historical height loss
>5 cm, or measured height loss >2.5 cm, or glucocorticoid
exposure for at least 3 mo over the past year. Deidentified data
from individuals in the Manitoba BMD Registry were linked
to province-wide healthcare administrative databases using
an anonymized personal health identification number. Two
primary care databases (the Physician Claims Database [PCD]
and Discharge Abstract Database [DAD]) were used to obtain
information on health care visits. Physician Claims Database
provided information including the date, types of services,
and diagnostic codes using the International Classification
of Diseases, Ninth Revision, Clinical Modification (ICD-9-
CM) codes. The study was approved by the University of
Manitoba Human Research Ethics Board (HREB HS21018,
H2004:017M) and data access was granted by the Manitoba
Health Information Privacy Committee (HIPC 2016/2017-
2029). This study adhered to the STROBE (Strengthening the
Reporting of Observational Studies in Epidemiology) guide-
lines for reporting cohort studies.

Spine age estimation

In our prior work, we trained a CNN model to predict
chronological age from lateral spine radiographs in the
VERTE-X (VERTEDbral fracture and osteoporosis detection
in spine X-ray) cohort of Korean adults who underwent
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spine examination in an institution (mean age 63.6 yr;
64.3% women; Table $1).!* VERTE-X spine age model was
developed using the EfficientNet-B4 architecture, with output
logits corresponding to ages from 40 to 100 yr, allowing it to
cover a wide age distribution (Figure $1).!* During training,
a mean-variance loss function, including softmax, mean,
and variance losses, was applied to optimize categorical age
prediction, align the predicted mean with the chronological
age, and constrain the spread of the predicted distribution,
respectively. The final predicted age was computed as
the expected value of the SoftMax-normalized probability
distribution (Figure S2). To apply VERTE-X spine age model
to DXA VFA images, a fine-tuning process was performed
using a randomly sampled 20% subset of the Manitoba
BMD Registry VFA images (Figure S3). To ensure consistent
image quality across VFA images, the images underwent
preprocessing including normalization, resizing, and intensity
scaling (Figure S4). Details of preprocessing and model fine-
tuning process can be found in the supplementary methods.
Predicted age difference was calculated as spine age minus
chronological age. A higher PAD was considered indicative
of accelerated spine aging. We applied the Gradient-weighted
Class Activation Mapping (Grad-CAM) technique to visualize
the regions of DXA VFA images that contributed most to the
model’s age prediction.!®

Covariates

Statistical models were adjusted for multiple covariates that
are indicative of increased fracture risk, including chrono-
logical age, sex, BMI, current smoking status, high alcohol
intake (alcohol substance abuse diagnosis codes in earlier
year), prolonged oral corticosteroid use (>90 d dispensed
in the 1 yr prior to DXA), rheumatoid arthritis, parental
hip fracture, secondary osteoporosis, diabetes mellitus, DXA
VFA morphologic vertebral fracture (VF) detected using mod-
ified algorithm-based qualitative (mABQ) method,!” local-
ized or generalized spine structural artifact, and FN BMD
T-score based on the young White female reference from
the Third National Health and Nutrition Examination Sur-
vey (NHANES III).!® Localized spine structural artifact was
defined as the presence of any excluded vertebral body in
LS BMD report due to variation of T-score (>1.0) between
adjacent vertebral bodies. Generalized spine structural artifact
was defined as a missing LS BMD value, resulting from
either an unperformed test or unreportable results due to
degenerative changes or surgical prostheses affecting multiple
vertebral levels (Figure S5).

Outcomes

The primary outcome was the occurrence of any clinical frac-
ture during follow-up, excluding skull, fingers, toes, ankles,
and hospitalized high-trauma fractures. Secondary outcomes
include non-vertebral, major osteoporotic (composite of ver-
tebral, forearm, hip, and humerus), and hip fractures, and
all-cause mortality. Fracture diagnoses and procedures up to
March 31, 2018 were coded using the ICD-9-CM prior to
2004, and the Canadian version of the Tenth Revision (ICD-
10-CA) from 2004 onward. Fractures were identified using
radiologically validated algorithms that have been adopted for
national surveillance purposes.'”»2? Fractures resulting from
high-trauma events, which were excluded, were identified
using trauma-specific ICD codes.
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Statistical analysis

Clinical characteristics of study individuals were compared
between event and non-event groups using the 2-sample inde-
pendent #-test for continuous variables and the chi-square
test for categorical variables. Beheshti method was applied
for bias adjustment.”! Agreement between predicted spine
age and chronological age was assessed using Bland—Altman
plots,”? with examining heteroscedasticity of residuals using
the Breusch-Pagan/Cook-Weisberg test.?>»?* Multivariable
linear regression models were fit to investigate the factors
associated with PAD. Areas under the receiver operating char-
acteristic curves (AUROC:) for discriminating outcomes were
compared between spine age and chronological age using the
DelLong method. Age- and sex-adjusted Cox regression mod-
els were used to plot the cumulative incidence of outcomes by
PAD quartiles. Cox proportional hazard models were fitted
to test associations between PAD (per one SD increment)
and all outcomes, with or without adjustment for covariates.
To examine potential effect modification, interaction terms
between PAD and chronological age, as well as between PAD
and the presence of VF at baseline, were included in the Cox
proportional hazards models. As a sensitivity analysis, we
applied the Fine—Gray subdistribution hazards model to assess
the robustness of the association between PAD and fracture,
accounting for death as a competing risk.2’> No violation of
the proportional hazard assumption was observed. Statistical
significance was assessed using 2-sided tests with o =.05. SPSS
for Windows version 29.0 (IBM) and Stata 18.0 (StataCorp)
were used for analysis.

Results
Clinical characteristics of study individuals

Out of the 27601 VFA scans performed between 2010 and
2023 in Manitoba, 20% (n =5537) were used to fine-tune
the VERTE-X spine age model (Figure S2). Among remaining
80% subset, data of 8810 individuals were analyzed as the
test set after excluding those undergoing DXA after 2017
(as outcome was collected through 2018) and those 50 yr
or younger. The mean age of individuals in the test set was
75.3 yr, with a range between 50 and 99 yr, and 93.2% were
women. Individuals with fracture events during follow-up
(n =899) had older age, lower BMI, higher prevalence of high
alcohol intake, prior fracture, local or general spine structural
artifacts, and lower DXA BMD T-scores (Table 1).

Correlation between spine age and chronological
age

A modest positive correlation was observed between spine
age derived from DXA VFA images and chronological age
(Pearson correlation coefficient 0.89, p <.001). The mean
PAD was +0.0 yr, with SD of 3.4 yr, and followed a normal
distribution (Figure S6). In Bland-Altman plot (Figure S7),
95% limit of agreement of PAD across mean of spine and
chronological age was —7.2 to 6.2. Test for heteroscedasticity
did not reach statistical significance (p =.993).

Factors associated with predicted spine age
difference
Figure 1 shows DXA VFA images of women with identical

chronological ages (70 yr) but varying predicted spine ages
(53, 70, and 79 yr). Grad-CAM visualization indicated that
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the model primarily focused on features across multiple verte-
bral levels to predict spine age. In a multiple linear regression
model, various factors were associated with PAD (Table 2).
Factors associated with PAD included generalized spine struc-
tural artifacts (+1.45 yr), current smoking status (+1.20 yr),
presence of VF (+1.02 yr), localized spine structural artifacts
(+0.46 yr), or history of nonvertebral fracture (+0.22 yr).
Lower FN BMD was associated with higher PAD (+0.56 yr
per 1 T-score decrement). The model explained 66% of the
total variance of PAD (adjusted R? 0.66).

Association of accelerated spine age with fracture
and mortality

The mean follow-up duration was 3.9 +2.2 yr. Fracture and
mortality occurred in 899 (26.4 cases per 1000 person-years)
and 969 (28.4 cases per 1000 person-years) individuals during
follow-up, respectively (Table S2). Compared with chronolog-
ical age, spine age showed consistently higher AUROC for
discriminating all outcomes including hip fracture (0.72 vs
0.70) and mortality (0.70 vs 0.68; p <.001 for all; Table S3).
When participants were stratified by PAD <—3.4 yr (1 SD
below the mean; decelerated spine age), —3.4 to 3.4 (normal),
and >3.4 (1 SD above the mean; accelerated spine age) groups,
accelerated spine age group had greater fracture and mortality
risk compared to the decelerated group (p-for-trend <.001
for all outcomes; Figure 2). In unadjusted Cox proportional
hazard model, each 1 SD increase in PAD was associated with
a higher risk of any fracture (aHR 1.22, 95% CI 1.14-1.30)
and mortality (aHR 1.18,95% CI 1.11-1.25). The association
remained robust (fracture: aHR 1.11, 95% CI 1.04-1.19;
mortality: aHR 1.12, 95% CI 1.05-1.20) in multivariable
model adjusted for age, sex, BMI, high alcohol intake, current
smoking, chronic glucocorticoid use, rheumatoid arthritis,
parental history of hip fracture, secondary osteoporosis, the
presence of diabetes mellitus, prevalent VFs, clinical history
of nonvertebral fractures, spine structural artifacts, and FN
BMD in the fully adjusted model (Table 3; Table S4). No sig-
nificant interaction was observed between PAD and chrono-
logical age (p for interaction=.417). In the fully-adjusted
Fine-Gray competing risk model, the association between
PAD and fracture remained robust after accounting for death
as a competing event (aHR 1.11,95% CI 1.04-1.19,p =.002).
When analysis was restricted to individuals without prevalent
vertebral at baseline, PAD remained as a robust predictor of
incident fracture (aHR 1.11, 95% CI 1.03-1.21, p =.008)
in fully adjusted model. Prevalent VF at baseline did not
significantly modify the association between PAD and the risk
of incident fracture (p for interaction =.862).

Discussion

In this study, spine age was estimated using DXA VFA images
using a pre-trained CNN that was fine-tuned in a large clinical
cohort of adults undergoing DXA screening in Manitoba,
Canada. Although the mean absolute difference between pre-
dicted spine age and chronological age was minimal (0.3 yr),
the variability of the difference was substantial (SD 5.6 yr). As
expected, the presence of VFs or spine structural artifacts on
DXA VFA images, as well as low bone density at the hip, was
associated with higher PAD, indicative of accelerated spine
aging. Clinical risk factors, such as current smoking status
and a history of clinical nonvertebral fractures, were also
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Table 1. Demographic and clinical characteristics of study participants.
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Incident fracture

Characteristic Overall (n =8810) No (2 =7911) Yes (n =899) p-value
Age, yr 75.3+6.8 75.1+6.7 77.3+7.4 <.001
Women 8275 (93.2) 7976 (93.2) 839 (93.3) .920
BMI, kg/m? 26.2+5.0 26.3+5.0 25.4+4.6 <.001
Current smoking 718 (8.2) 635 (8.0) 83 (9.2) 211
High alcohol intake 22 (0.3) 15(0.2) 7 (0.8) .048
Chronic glucocorticoid use 522 (5.9) 466 (5.9) 56 (6.2) 684
Rheumatoid arthritis 385 (4.3) 338 (4.3) 47 (5.2) 219
Parent hip fracture 1121 (12.7) 996 (12.6) 125 (13.9) 279
Secondary osteoporosis 1448 (16.4) 1299 (16.4) 149 (16.6) 906
Diabetes mellitus 1132 (12.9) 1022 (12.9) 110 (12.2) .562
Previous fracture history

Vertebral 1460 (16.6) 1212 (15.3) 248 (27.6) <.001

Non-vertebral 2361 (26.8) 2011 (25.4) 350 (38.9) <.001
Spine structural artifacts

Localized 2512 (28.5) 2225 (28.1) 287 (31.9) .020

Generalized 1096 (12.4) 1006 (12.7) 90 (10.0) .012
DXA BMD FN T-score -2.140.7 -2.04+0.7 -2.240.6 <.001

Data are presented as 7 (%) or mean = SD.

Chronological age: 70

Spine age: 53
Predicted age difference: -17 Predicted age difference: 0

Chronological age: 70
Spine age: 70

Chronological age: 70
Spine age: 79
Predicted age difference: 9

Figure 1. Examples of DXA VFA images of women with identical chronological age but varying predicted spine age. Right panel (chronological age 70,
spine age 79, and predicted age difference +9) indicates an image with features of accelerated spine aging.

associated with increased PAD. Higher PAD was associated
with greater risks of fracture and mortality, independent of
clinical risk factors, VE spine structural artifacts, and BMD.
The accelerated spine age derived from spine images using
a CNN (the VERTE-X spine age model) was associated with
fracture and mortality in a cohort of community-dwelling
Korean older adults.'* In a hold-out test set of the Korean
cohort, spine age estimated from lateral spine radiographs
using the VERTE-X model showed an average difference of
—0.8 yr compared to chronological age (SD 4.9), with better
predictive performance for the presence of morphologic VF
or osteoporosis than chronological age.'* The preliminary
findings could be successfully replicated and extended in a
large cohort of Canadian adults who had screening DXA
tests. Through the fine-tuning strategy, the knowledge of the
pre-trained model to extract core features of aging from
spine images could be effectively transferred to spine images
generated by different modalities (lateral spine radiographs
to DXA VFA) in individuals with different ethnicities (Kore-
ans to Canadians). These findings support the existence of

common, machine-recognizable features of musculoskeletal
aging in spine images, independent of image modalities, across
different ethnic groups. This would provide an important
basis to set effective strategies to develop more generalizable
machine learning models that work on various spine image
domains and population with ethnic differences, while reduc-
ing unnecessary efforts to train each model separately from
scratch.

Aging is known to affect all structures of spinal units,
including bones, disks, nerve fibers, ligaments, facets, and
muscles.”® Various factors contributed to accelerated spine
age derived from DXA VFA images. As predicted, the presence
of morphologic VFs, local or generalized spine structural arti-
facts, and low bone density were factors that contributed to
accelerated spine age, similarly with the findings in the Korean
dataset.' Structural artifacts of spine and current smoking
were associated with the accelerated spine age. Degenera-
tive changes of spine, one of the major cause of structural
artifacts of spine, are known to increase with aging, which
may accompany low back pain in older adults that limit
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Table 2. Factors contributing to accelerated spine aging.
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Age- and sex-adjusted

Multivariable adjusted

Variables Beta coefficient® p-value Beta coefficient® p-value
(95% CI) (95% CI)
Generalized spine structural artifacts 1.17 (0.96-1.39) <.001 1.45 (1.24-1.67) <.001
Current smoking status 1.61 (1.35-1.87) <.001 1.20 (0.95-1.495) <.001
Vertebral fracture in DXA VFA image® 1.28 (1.09-1.47) <.001 1.02 (0.83-1.21) <.001
Women (vs men) 0.71 (0.43-0.99) <.001 0.87 (0.59-1.15) <.001
Femoral neck BMD, per 1 T-score decrement 0.84 (0.74-0.95) <.001 0.60 (0.49-0.70) <.001
Localized spine structural artifacts 0.18 (0.02-0.33) .029 0.46 (0.30-0.61) <.001
Previous clinical nonvertebral fracture 0.40 (0.24-0.56) <.001 0.22 (0.06-0.37) .006
BMI —0.11 (—0.12 to —0.09) <.001 —0.09 (—0.11 to —0.08) <.001
Chronological age 0.00 (—0.12 to 0.01) .825 —0.02 (—0.03 to —0.01) <.001
High alcohol intake 1.30 (=0.13 to 2.72) .074 0.64 (—0.72 to 2.00) .360
Secondary osteoporosis 0.05 (—0.15 to 0.24) .645 0.04 (—0.14 t0 0.22) 670
Diabetes Mellitus —0.21 (—=0.42 to0 0.01) .058 0.04 (—0.17 to 0.24) .740
Rheumatoid arthritis 0.18 (—0.16 t0 0.53) 299 0.01 (=0.33 t0 0.35) 972
Prolonged oral corticosteroid use —0.04 (—0.35 t0 0.27) 782 —0.02 (—0.32 t0 0.28) 916
Parental hip fracture —0.04 (—0.25 t0 0.17) .720 —0.12 (—0.33 t0 0.08) .240

2Estimated beta coefficients indicate the predicted age difference (in years) for clinical characteristics. Positive beta coefficients (PAD > 0) indicate that the
factor contributed to accelerated spine aging. bVertebral fractures in DXA VFA images were detected using modified algorithm-based qualitative method by
expert interpreters. Abbreviations: DXA VFA, DXA vertebral fracture assessment.
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Figure 2. Age- and sex-adjusted cumulative incidence curves for (A) any incident fracture, (B) major osteoporotic fracture, (C) hip fracture, and (D) death,
stratified by predicted age difference (PAD <—3.4 yr [1 SD], —3.4 to 3.4 yr, and PAD >3.4 yr).

physical performance.2°27 In a recent study, the presence of
VF was associated with worsening of degenerative changes of
spine.”® These findings align with the contribution of degen-
erative changes to accelerated spine age, suggesting that the

coexistence of VF and degenerative change could reflect the
duration and severity of age-related deformation of the spine.
The adverse effect of smoking on bone density and fracture
risk is well recognized.”’ Smoking is also associated with
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Table 3. Association of predicted spine age difference with incident fracture and mortality.

Model 1 (unadjusted)

Model 2 (adjusted for clinical risk

Model 3 (Model 2 + FN BMD)

factors, DXA VFA vertebral fracture,
clinical nonvertebral fracture, and
spine structural artifacts)

Outcomes HR (95% CI) p-value HR (95% CI) p-value HR (95% CI) p-value
Any fracture 1.22 (1.14-1.30) <.001 1.14 (1.07-1.22) <.001 1.11 (1.04-1.19) .002
Nonvertebral 1.21(1.13-1.30) <.001 1.13 (1.05-1.22) .001 1.10 (1.03-1.19) .008
MOF 1.41 (1.31-1.52) <.001 1.15 (1.07-1.24) <.001 1.12 (1.03-1.20) .005
Hip fracture 1.42 (1.26-1.59) <.001 1.32 (1.17-1.50) <.001 1.25 (1.10-1.41) .001
Mortality 1.18 (1.11-1.25) <.001 1.15 (1.08-1.23) <.001 1.12 (1.05-1.20) <.001

Hazard ratio (HR) per 1 SD increment in predicted age difference (predicted minus chronological age). Clinical risk factors: chronological age, sex, BMI,
alcohol intake, current smoking status, prolonged glucocorticoid use, rheumatoid arthritis, parental hip fracture, secondary osteoporosis, and presence of
diabetes mellitus. Abbreviations: VFA, vertebral fracture assessment; MOF, major osteoporotic fracture.

intervertebral disk degeneration, which may have provided
visual clues to the spine age model to detect accelerated spine
age in smokers.>® Nevertheless, one third of the variance in
the predicted spine age difference remained unexplained yet.
Several unmeasured factors could have affected the predicted
spine age including changes in body shapes, facets, ligaments,
curvature of spinal axis, vascular calcification, or medical
implants in organs other than bone; this needs to be inves-
tigated further.

Accelerated spine age was associated with greater frac-
ture risk and mortality. These associations were independent
of chronological age, clinical risk factors, presence of VE
degenerative changes of spine, and bone density, suggesting
that the machine learning-predicted spine age could be a
useful measurement to improve fracture risk assessment. This
approach has unique property that summarizes a complex,
multi-dimensional aging status of spine and surrounding tis-
sues into a score on an interpretable scale, age. In clinical
aspect, predicted spine age of an individual could be used to
enhance the performance of risk assessment tools for fracture
or other health outcomes, by adjusting chronological age
using the predicted spine age difference. In preliminary results
from the KURE cohort, the substitution of chronological age
with spine age to calculate FRAX hip fracture probability
improved the discriminatory performance for hip fracture.'*
This hypothesis needs additional investigation.

Overall fracture incidence was similar (24.1 vs 26.4
per 1000 person-years) Between the Korean derivation set
(VERTE-X) and the Manitoba BMD Registry. However, VF
incidence was higher in the Korean cohort, likely reflecting
case definition: the Korean cohort captured both clinical
and morphometric VFs, whereas the Manitoba registry
captured VFs based on diagnosis codes. This also aligns
with relatively higher incidence of VF reported in Korean
population.?’ Non-VFs including hip were more frequent in
the Manitoba cohort, which may partly relate to differences
in age distribution between 2 cohorts. Despite these incidence
differences, the spine age model demonstrated comparable
prognostic performance across cohorts.

This study has several limitations. As an observational
study, this study cannot establish that the accelerated spine
age caused incident fractures or mortality directly. As we did
not have measurement of true biological aging in spine yet,
we used chronological age as target variable to train for the
CNN model. Therefore, it was inevitable that prediction error
and true accelerated spine aging in our findings could not be
discerned. However, even with this limitation, we observed

robust association of PAD with fracture and mortality risk
independent of chronological age, sex, and other covariates.

In summary, the accelerated spine age was associated with
greater fracture risk and mortality in individuals at high risk
of fracture, independent of chronological age, clinical risk
factors, prevalent VE, spine structural artifacts, and FN BMD.
Whether utilizing the predicted spine age could enhance the
predictive performance of risk assessment tools merits further
investigation.
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