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Abstract
Development of an artificial intelligence model for

standardized evaluation of apical periodontitis

Park, Yudam, D.D.S.

Department of Dentistry
The Graduate School, Yonsei University
(Directed by Professor Kim, Sunil, D.D.S., M.S.D., Ph.D.)

Apical periodontitis is a common inflammatory condition of endodontic origin that requires
accurate radiographic evaluation for proper treatment planning. The Periapical Index (PAI) is a
widely used scoring system for assessing lesion severity; however, it is subject to interobserver
variability and diagnostic inconsistency. This study aimed to develop an artificial intelligence (AI)
model specifically designed for automated PAI scoring, utilizing expert-annotated periapical

radiographs to classify lesions according to the standardized PAI system.

A total of 8,506 annotated radiographs were used to train a ResNet50-based convolutional
neural network (CNN). To improve performance and generalizability, the model incorporated
contrast enhancement, dataset-specific normalization, and extensive data augmentation. A soft2-
encoded cross-entropy loss function was used to account for the ordinal nature of PAI scores.
Stratified five-fold cross-validation demonstrated strong agreement with expert scorings, achieving
a quadratic weighted kappa (QWK) of 0.729 and consistent performance across all five PAI

categories.



The proposed model provides standardized and objective lesion evaluation, which may reduce
diagnostic variability and support general practitioners in making more informed clinical
decisions. It also has potential applications in dental education by offering visual feedback and
consistent references for student training. Future work should focus on multi-institutional data
expansion, clinical validation, and integration with outcome-predictive Al models to establish a

comprehensive decision-support system for endodontic treatment planning.

Keywords: Artificial intelligence; Periapical Index (PAI); Apical periodontitis; Convolutional

neural network; Radiographic diagnosis



Development of an artificial intelligence model for

standardized evaluation of apical periodontitis

Park, Yudam

Department of Dentistry
The Graduate School, Yonsei University
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I. Introduction

Apical periodontitis is a prevalent dental condition characterized by inflammation of the
periapical tissues, primarily resulting from bacterial infection of the dental pulp (Kakehashi et al.,
1965). Without treatment, periapical inflammation may persist and contribute to gradual loss of
periodontal support. Persistent or unresolved apical periodontitis remains a significant challenge in

endodontics, often necessitating complex retreatment procedures or tooth extraction (Nair, 2006).



Endodontic treatments can effectively preserve natural teeth and have demonstrated favorable long-
term survival rates comparable or superior to dental implants in many clinical scenarios (Setzer &
Kim, 2014; Torabinejad & Goodacre, 2006). Nevertheless, many general dentists frequently opt for
extraction followed by dental implant placement, particularly in complex or severe cases (Lee et al.,
2020). This preference often arises from difficulties in accurately assessing the severity and
prognosis of periapical lesions, which requires considerable clinical experience and expertise.
Clinical decisions regarding tooth preservation versus extraction significantly depend on various
factors, including tooth position, root canal filling status, lesion size, and characteristics (Lee et al.,

2020).

The Periapical Index (PAI) scoring system provides a standardized method for evaluating lesion
severity on a scale ranging from 1 (healthy) to 5 (severe periodontitis) (Qrstavik et al., 1986).
However, manual PAI scoring is inherently subjective, relying heavily on the clinician's experience
and judgment. Studies have reported moderate intraobserver agreement (k = 0.48) and fair
interobserver agreement (x = 0.39), highlighting that even experienced clinicians may face
challenges maintaining consistency (Tarcin et al., 2015). Additionally, the accuracy of manual PAI
assessments can occasionally be compromised by limitations inherent to periapical radiographs,
such as two-dimensional representation and overlapping anatomical structures, potentially
complicating lesion interpretation (Patel et al., 2015). Such variability and limitations can result in
inconsistent clinical decisions, including unnecessary tooth extractions. Therefore, the involvement
or guidance of experienced endodontists or oral radiologists is frequently recommended to enhance

diagnostic accuracy and consistency in clinical practice and research settings.

In recent years, artificial intelligence (Al) has emerged as a powerful tool in medical diagnostics,
offering significant potential for automating complex diagnostic tasks, enhancing accuracy, and
reducing human error (Schwendicke et al., 2020). In dentistry, convolutional neural networks

(CNNps), a subset of deep learning, have been successfully applied to various diagnostic fields such



as detecting dental caries, periodontal disease, and root fractures, demonstrating promising
diagnostic performance comparable to experienced clinicians (Hung et al., 2020). Furthermore, Al-
driven models have expanded into the field of endodontics, where accurate prediction of treatment
outcomes and prognosis can significantly impact clinical decision-making. Recently, Lee et al. (2023)
proposed PRESSAN-17, a deep convolutional neural network (DCNN) designed to predict
endodontic outcomes using preoperative periapical radiographs. Building upon this, Hwang (2024)
extended the model to incorporate a significantly larger dataset and clinical features across various
tooth types. The modified model improved predictive accuracy and sensitivity, highlighting the
scalability and adaptability of DCNNs in endodontic prognosis prediction. These advancements
illustrate the expanding role of Al in clinical endodontics and the need for further integration with
structured diagnostic tools such as PAI for comprehensive diagnostic support. A recent review by
Fontenele and Jacobs (2025) also emphasized the potential of Al in image-based diagnostics and
treatment planning in endodontics, while highlighting the current lack of models tailored for

standardized lesion classification.

However, the application of Al in endodontics, particularly in the evaluation of periapical lesions,
remains underexplored. Existing AI models in endodontics have primarily focused on predicting
treatment outcomes based on preoperative radiographs, often overlooking the critical intermediate
step of lesion classification through PAI scoring. Although Lee et al.'s study marked a significant
step forward by demonstrating that Al can learn relevant features for prognosis prediction, the study
implicitly relied on accurate lesion assessment as part of the dataset construction. This highlights a
key limitation: before attempting to predict prognosis, the development of a reliable Al model

capable of accurately evaluating periapical lesions via PAI scoring must precede.

This gap is significant, as accurate PAI scoring is essential for effective treatment planning and
prognosis assessment (Kirkevang et al., 2017). Without reliable and standardized lesion evaluation,

the accuracy of subsequent predictive models is compromised. By automating PAI scoring, Al has



the potential to eliminate subjectivity, ensure consistency, and provide clinicians with a reliable tool
for endodontic decision-making. The present study addresses this gap by developing an Al model
specifically designed for automated PAI scoring, utilizing expert-annotated periapical radiographs

to classify lesions according to the standardized PAI system.

2. Materials and Methods

2.1. Ethical considerations

This study was approved by the Institutional Review Board (IRB) of the Yonsei University Dental
Hospital (2-2024-0064). The IRB waived the need for individual informed consent, as this study
featured a non-interventional retrospective design, and all the data were analyzed anonymously. The
study was presented in accordance with the Checklist for Artificial Intelligence in Medical Imaging

(CLAIM) (Mongan et al., 2020).

2.2. Data Collection

Periapical images were collected from the database of Yonsei University Dental Hospital. Patients
who received nonsurgical root canal treatment or retreatment between 2008 and 2015 were included
in the database. For each case, preoperative radiographs obtained prior to treatment, as well as
postoperative radiographs obtained after the procedures, were separately collected. The inclusion

criteria were as follows :

1) Presence of a preoperative periapical radiograph obtained within 3 months before treatment

initiation.

2) Periapical radiographs clearly demonstrating the apical region without overlapping adjacent



anatomical structures, enabling accurate PAI scoring.

Only permanent teeth were included in this study. Cases involving retained primary teeth, or

unclear root apex visibility due to overlapping anatomical structures were excluded.

The total number of data points in the input dataset was 8506. All patient data were anonymized,

and each exported radiographic image was labeled with a randomly generated serial number.

After data collection, PAI assessment prior to Al model training was independently performed by
two experienced endodontists. In cases of disagreement, the final PAI score was determined through
consensus discussion. The inter-observer reliability, measured by Cohen's kappa coefficient, was
0.445. These finalized consensus scores served as the reference standard for training and evaluating
the Al model, and Al-generated scores were subsequently compared against these human expert
evaluations. The dataset included diverse cases from mild to severe apical periodontitis, ensuring

the Al model’s broad applicability.

2.3. Image Annotation and Preprocessing

All annotations were performed by a single experienced endodontist in a blinded manner with
respect to treatment outcomes. Specialized software (Image J, National Institutes of Health,
Bethesda, Maryland, USA) was used to ensure consistency in labeling. The evaluator followed a
predefined annotation protocol that specified guidelines for selecting the region of interest (ROI)
and identifying apical radiolucency. Ambiguous cases were flagged during annotation and re-

evaluated after consensus discussion with other endodontist. The preprocessing steps included:

e Cropping: Images were cropped to focus on the target tooth, following specific guidelines
to ensure that the region ROI was accurately captured. The cropping criteria for maxillary

teeth were as follows:



o Inferior Boundary: The lower boundary was set to include the entire crown of

the target tooth.

o Lateral Boundaries: The left and right boundaries were set to include the pulpal
horn of the adjacent teeth. If the target tooth was not fully included within this
range, the boundaries were extended until the target tooth was fully captured. In
cases where an adjacent tooth was missing, the boundary was set symmetrically

based on the available adjacent tooth.

o Superior Boundary: The upper boundary was set to include the lesion margin
plus an additional 2 mm superiorly. If the lesion extended beyond the radiographic

field, the boundary was extended to the uppermost edge of the radiograph.

For mandibular teeth, the same criteria were applied in reverse, with the superior and

inferior boundaries inverted.

Contrast Normalization: Contrast Limited Adaptive Histogram Equalization (CLAHE)

was applied to enhance image contrast, making subtle lesions more visible.

Resizing: Images were cropped to focus on the target tooth and resized to a standard

dimension of 224 x 224 pixels.

Data Augmentation: Data augmentation techniques were applied using the
Albumentations library, including geometric transformations, intensity adjustments,
Gaussian Blur, Elastic Transform, Grid Distortion, Optical Distortion, and Random Gamma
adjustments to prevent model overfitting and ensure robustness. These augmentations were
performed on-the-fly during training to prevent overfitting and improve the model's ability

to generalize to new, unseen data.



2.4. A1 Model Development

A CNN based on the ResNet50 architecture was utilized, employing:

Cross-Validation: Stratified cross-validation was performed to maintain consistent class
distribution, ensuring robust model generalization. Multiple dataset partitions were

averaged to minimize data distribution bias and effectively handle class imbalance.

Transfer Learning: Due to the limited size of the dataset for fully training a large-scale
deep learning model, transfer learning was employed. The model was initialized with
parameters pretrained on a large-scale dataset (ImageNet), followed by fine-tuning to the
periapical radiograph dataset. Since periapical radiographs differ visually from ImageNet
images, feature reuse alone was insufficient. Therefore, initial layers were kept fixed, while
intermediate and upper layers were fine-tuned using a layer-wise fine-tuning approach to

balance generalizability of pretrained features and adaptation to the target domain.

Loss Function: Soft-encoded cross-entropy (SCE) with additional regularization terms
was used to reflect the ordinal nature of PAI scoring and enforce unimodal output

distribution.

2.5. Model Evaluation

The model's performance was assessed using:

QWK Scores: Quadratic weighted kappa (QWK) was the primary metric, complemented
by accuracy measurements. QWK is particularly suited for ordinal classification tasks as it

incorporates the distance between predicted and actual classes into the evaluation,



penalizing larger discrepancies more heavily. This allows for a nuanced assessment of
model performance in cases where class distinctions carry meaningful ordinal relationships,

making QWK ideal for evaluating the reliability of PAI scoring models.

e Confusion matrix: To evaluate classification performance in detail, a confusion matrix
was generated using the predictions of the trained model on the test dataset. The confusion
matrix visualizes the agreement between predicted PAI scores and the expert-annotated
ground truth labels, allowing for a granular assessment of classification accuracy across
ordinal categories. Given the ordinal nature of the PAI scoring system, the matrix was
carefully analyzed to assess whether the model tended to misclassify into adjacent scores

rather than making large errors across non-neighboring classes.

2.6. Visualization of Model Predictions

Gradient-weighted Class Activation Mapping (Grad-CAM) was utilized to visually interpret the
trained model's predictions. This method aggregates gradient-weighted feature maps from
convolutional layers to highlight regions within the input image that were most influential in the

model's decision-making process.

Representative cases were selected based on the model’s prediction confidence and the level of
agreement with expert PAI scores. Both high-confidence correct predictions and borderline
misclassifications were included to provide a comprehensive overview of the model's behavior

across a range of scenarios.

The resulting Grad-CAM heatmaps were superimposed onto the corresponding preprocessed
periapical radiographs to visualize the regions of diagnostic focus. Highlighted areas were
considered clinically valid if they overlapped with the apical radiolucency regions identified by

human experts.



3. Results

The distribution of PAI scores within the dataset is presented in Table 1. Among the total cases,
the most frequent PAI score was 3, accounting for 2,504 cases (29.44%), followed by scores of 2
(2,155 cases; 25.34%) and 4 (1,776 cases; 20.88%). Cases with scores of 5 and 1 were less prevalent,

comprising 1,161 (13.65%) and 910 (10.70%) cases, respectively.

Table 1 The Distribution of PAI Scores

PAI score 1 2 3 4 5

Number of cases(%) 910(10.70%) 2155(25.34%) 2504(29.44%) 1776(20.88%) 1161(13.63%)

Table 2 presents the classification performance metrics of the proposed model across five cross-
validation folds. The Al model achieved a QWK score of 0.7297 &+ 0.0100 and an accuracy of 0.5441
+ 0.0230 across five-fold stratified cross-validation, indicating stable and reliable performance.
Individual fold QWK values ranged from 0.7174 to 0.7445, while accuracy ranged from 0.5132 to

0.5724.



Table 2 Performance of the AI model across 5-fold cross-validation.

Accuracy QWK
Fold 1 0.5296 0.7174
Fold 2 0.5691 0.7381
Fold 3 0.5132 0.7253
Fold 4 0.5724 0.7445
Fold 5 0.5362 0.7233
Avg(std) 0.5441(0.0230) 0.7297(0.0100)

As shown in the confusion matrix (Figure 1), the model achieved the highest classification
accuracy for PAI score 3, with 1,173 instances correctly predicted. Score 5 also showed favorable
performance with 688 correctly classified cases. Most misclassifications occurred between
neighboring classes, especially between scores 2 and 3, and scores 4 and 5, consistent with the
ordinal structure of the PAI scale. For example, score 2 was frequently misclassified as 3 (492 cases),
and score 4 was sometimes predicted as 5 (213 cases), while score 3 also received misclassifications

from both directions (601 predicted as 3 from score 2; 313 from score 4).

10



2 328

83

Predicted Label
w

1 2 3 4 S
Target Label

Figure 1 Confusion matrix of the AI model’s predictions versus expert-assigned PAI scores.

Visualization of Model Predictions

To provide visual interpretability of the model’s decision-making process, Grad-CAM was
utilized. Representative examples are shown in Figure 2. Across multiple test samples, Grad-CAM
consistently emphasized the periapical region, particularly around the apex of the root, where
radiolucent signs of apical periodontitis typically appear. For cases predicted correctly with high
confidence (e.g., PAI scores 3 and 4), the highlighted areas matched well with the lesion sites

annotated by experienced endodontists.
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Figure 2 Representative Grad-CAM visualizations of Al predictions for PAI scoring.

4. Discussion

Recent advances in Al have enabled deep DCNNSs to extract clinically relevant features from
periapical radiographs and support decision-making in endodontics (Schwendicke et al., 2020). A
representative study by Lee et al. (2023) introduced PRESSAN-17, a self-attention—enhanced
DCNN model that accurately detected key clinical features and predicted three-year endodontic
outcomes from preoperative radiographs. Similarly, Hwang (2024) developed a DCNN-based model
to forecast endodontic prognosis from intraoral radiographs, further demonstrating the potential of
Al in prognosis-driven decision support. Their results demonstrated the potential of AI models to

assist clinicians in formulating prognosis and treatment decisions based on radiographic information.

However, while these models focused primarily on outcome prediction, they often required

manual cropping of the region of interest and lacked interpretability in intermediate diagnostic steps.

12



The present study’s model enables objective, consistent assessment of lesion severity without
requiring manual preprocessing. By targeting the PAI score directly, the model offers interpretable
outputs aligned with clinical evaluation practices. This not only increases its potential for seamless
clinical integration but also provides a foundation for future extensions into outcome prediction
models. Moreover, the inclusion of Grad-CAM visualizations enhances trust and interpretability,
allowing clinicians to understand the basis of Al-generated decisions. Ultimately, this study’s model
bridges a practical and diagnostic gap, complementing existing approaches while improving real-

world applicability.

The QWK is a robust metric for evaluating agreement in ordinal classification tasks, as it
considers both the order of categories and the degree of disagreement between predicted and actual
labels. Unlike simple accuracy, which treats all misclassifications equally, QWK penalizes
predictions more severely when they deviate further from the true class, making it particularly

suitable for tasks such as PAI scoring, where classes are ordered and clinically graded.

In this study, the proposed Al model achieved a QWK score of 0.729, representing substantial
agreement with expert-assigned PAI scores. This result is notable given the intrinsic difficulty of
PAI scoring, which requires the evaluator to distinguish between subtle differences in lesion severity
across five ordinal categories. In previous studies outside of dentistry, QWK has been widely used
to assess Al performance in similarly complex classification tasks. For instance, Araujo et al. (2020)
applied QWK to evaluate their DRIGRADUATE system for diabetic retinopathy grading, reporting
values ranging from 0.71 to 0.84 depending on the dataset, despite variability in image quality and
inter-rater uncertainty. Additionally, Swiecicki et al. (2021) developed a deep learning-based
algorithm for assessing knee osteoarthritis severity in radiographs using the Kellgren-Lawrence
grading system. Their model achieved a QWK of 0.9066 when compared to expert annotations,
demonstrating the effectiveness of QWK in evaluating Al performance in medical imaging tasks

with ordinal scales. Although these models achieved comparable or slightly higher QWK scores, it

13



is important to consider the unique challenges of PAI classification, including the radiographic
complexity of periapical lesions. Therefore, the QWK of 0.729 attained in this study can be
considered a clinically meaningful result that supports the model’s potential as a decision-support

tool in endodontics.

To improve the model’s QWK performance, several steps were taken throughout this study. First,
data distribution was balanced by curating a dataset with relatively uniform representation across all
five PAI scores. Additionally, the number of radiographs was significantly increased compared to
previous studies, enhancing model generalizability. Preprocessing techniques such as contrast
enhancement using CLAHE and dataset-specific intensity normalization further improved image

quality for learning.

From a modeling perspective, key architectural enhancements were introduced. A SCE loss
function with ordinal regularization was employed to better reflect the structure of the PAI scale. A
layer-wise fine-tuning approach allowed the model to effectively leverage pretrained ImageNet
weights while adapting to the nuances of grayscale dental radiographs. Furthermore, advanced data
augmentation techniques, including distortion-based transformations, were added to improve
robustness and reduce overfitting. The final model thus incorporates both data-level and model-level
optimizations aimed at maximizing ordinal classification performance in the context of PAI scoring.
These design choices collectively contributed to the achieved QWK score and improved the clinical

utility of the system.

Compared to the study by Moidu et al. (2022), which developed a YOLOv3-based CNN for
automated PAI classification, our study offers several key improvements. Their model showed
limited accuracy for intermediate and severe lesions, whereas the model developed in this study
demonstrated more balanced performance across all five PAI categories, particularly for scores 3, 4,
and 5. This was enabled by a larger, more evenly distributed dataset and advanced preprocessing,

including CLAHE, dataset-specific normalization, and distortion-based augmentation. In addition,

14



our model utilized a soft-encoded loss function tailored for ordinal classification, allowing for more
appropriate handling of the graded nature of PAI scores. The integration of Grad-CAM also
enhanced model transparency, making it more suitable for clinical decision support and educational

use.

The proposed Al model holds significant potential for clinical implementation. By integrating
automated PAI scoring into dental radiographic workflows, clinicians can obtain consistent,
objective assessments of lesion severity, reducing diagnostic variability across practitioners. This
capability is particularly valuable for general dentists who may not have specialized endodontic
training, promoting more standardized and evidence-based treatment decisions. Such decision-
support tools have been shown to enhance diagnostic efficiency and confidence without
undermining the clinician’s role in final judgment. Beyond clinical application, this study’s model
shows potential as an educational tool for training purposes. Integrating Al-assisted PAI scoring into
dental training programs can help students learn to assess periapical lesions with greater consistency.
By comparing their judgments with model predictions and Grad-CAM visualizations, students can
deepen their understanding of radiographic interpretation and improve their diagnostic accuracy in

endodontics.

While our Al model demonstrates strong performance, some limitations should be considered.
First, the training data was derived from a single institution, which may limit generalizability. To
address this, future studies should conduct external validation using independent datasets to evaluate
the model’s performance across diverse clinical settings and patient populations. Second, while our
model achieved a high QWK score, further optimization through deep learning architectures, such
as attention mechanisms, may enhance performance. Additionally, real-time Al-assisted diagnostic
tools should be developed and tested in clinical settings to evaluate their practical impact on
treatment planning. Finally, further research should focus on refining the Al model to reduce

potential biases, improve interpretability, and ensure seamless integration into existing dental

15



imaging systems.

The integration of the proposed model with predictive models for long-term treatment outcomes
could provide a comprehensive decision-support system for endodontic care. Another promising
avenue involves developing image-generation models capable of reconstructing anticipated post-
treatment radiographic outcomes based on preoperative imaging data. This innovation would
provide clinicians with valuable visual representations to facilitate patient communication and
informed decision-making, potentially transforming endodontic diagnostics by coupling predictive

analytics with intuitive visual interpretation.

5. Conclusion

This study developed and validated an Al model for automated PAI scoring that achieved expert-
level accuracy. By providing consistent and objective assessments of periapical lesions, the model
has potential to support standardized diagnostic workflows in clinical endodontics. These findings
highlight the role of Al in enhancing diagnostic reliability and promoting precision in endodontic

treatment planning.
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