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ABSTRACT

Multi-modal Assessment for Dental Diagnosis Assistant:
Self-supervised Integration of Radiographic and Clinical Data

Introduction

Accurate dental diagnosis is achieved by synthesizing various data including patient history,
clinical examinations, and radiographic images. Therefore, actual diagnosis heavily relies on the
clinician's experience in synthesizing these data, resulting in variations in diagnostic accuracy.
Dental diagnostic assistance utilizing artificial intelligence (Al) learning is expected to contribute to
improving this accuracy. While various Al applications are currently emerging in dentistry, research
in the diagnostic field is still limited to single-modal learning that uses only radiographic images.
This study aims to overcome these limitations by developing a multi-modal Al model that utilizes
various types of data necessary for diagnosis through self-supervised learning methods, which are
pre-training techniques. The objectives of this study are as follows: first, to develop a single-modal
Al diagnostic model using clinical examination data; second, to develop a single-modal Al
diagnostic model using periapical radiographic images; and third, to develop a multi-modal Al
model combining both models and compare the diagnostic performance among the three models
utilizing self-supervised learning techniques.

Methods

For Al model development, 3,341 clinical datasets from 1,344 patients who visited Yonsei Dental
Hospital were utilized. Through a screening process, 705 clinical datasets with matching periapical
radiographs suitable for training were selected. To develop a single-modal Al diagnostic model
using clinical examinations, data were extracted from medical records. The data included
categorized patient complaints, gender, and age as basic information, along with seven clinical
examinations commonly used for single tooth diagnosis: percussion, mobility, bite, air, cold, hot,
and electric pulp test. Self-supervised learning techniques were applied to induce efficient learning,
and during the accuracy improvement process, clinical examination types were selected and missing
data were imputed with the most frequent values.

To create an Al diagnostic model using periapical radiographic images, 705 periapical
radiographs were used. These radiographs corresponded to the diagnostic timepoint of the clinical
examinations used in the previous model. To induce efficient learning, a masked autoencoder, which
is a self-supervised learning technique for images, was applied. To improve accuracy, lesions and
feature points in periapical radiographs were labeled in a detection format, and optimization was

vii



performed to reduce errors.

After maximizing the performance of single-modal Al models using clinical examination data
and periapical radiographic images respectively, a multi-modal Al model was constructed by
combining the two single-modal models. Subsequently, optimization processes were conducted to
reduce overall errors. Model performance was evaluated through target metrics such as accuracy
and precision, confusion matrices, and receiver operating characteristic (ROC) curve analysis, and
compared through ablation studies that modularized each component.

When developing a multimodal Al diagnostic model, training based on image classification of
radiographic data did not fully leverage the advantages of multimodality due to model complexity.
In contrast, the detection-based approach demonstrated superior diagnostic performance in the
multimodal setting compared to the single modality, particularly in the diagnosis of dental caries,
tooth fractures, and pulpitis. Notably, a significant improvement was observed in the diagnosis of
tooth fractures.

Conclusion

This study evaluated and compared the diagnostic performance of multi-modal and single-modal
approaches in Al-based diagnosis. It also confirmed that the consistency of clinical examination
standards, precision of radiographic image labeling, and the quantity and quality of data significantly
impact the diagnostic performance of Al models. This research presents the possibilities and
limitations of multi-modal approaches in Al-based dental diagnosis and emphasizes the importance
of retrospective Al research and the standardization and integration of clinical data. Future research
plans to analyze modal data with complementary characteristics according to diagnostic categories
and explore the possibilities for improving multi-modal performance in diagnosis.

Key words : Artificial Intelligence, Dental Diagnosis, Radiographic Image, Clinical
Examination, Single-modal, Multimodal, Self-Supervised Learning, Masked Autoencoder
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1. Introduction

1.1. Advancement of Artificial Intelligence

In recent years, artificial intelligence (Al) has been driving innovation across various industries.
In the past, rule-based machine learning and probabilistic models created by humans from data were
predominant. However, to create robust models that adaptively respond to the infinite diversity and
variability of data, it became necessary to learn the rules themselves by training on large volumes of
data, which became the cornerstone for the development of deep learning. The types of data utilized
have expanded to include tabular data, numbers, text, and audio data. Subsequently, the emergence
of Convolutional Neural Networks (CNNs) brought revolutionary changes to the field of image
analysis. By mimicking human visual perception, CNNs can automatically extract and learn features
from images, providing much higher accuracy and efficiency than traditional manual image analysis
methods, and are now widely used across various fields including manufacturing, quality control,
autonomous driving, and the medical industry.

With the emergence of new image analysis models centered on deep learning, accuracy and data
processing capabilities continue to improve. These advancements are driving the optimization of
model performance, increased learning speed, enhanced data interpretation capabilities, and
improved generalization performance, thereby enabling expansion into automation, precision
analysis, and predictive systems. In deep learning particularly, various research is being conducted
on data processing and augmentation for effective learning, robust neural network models, training
techniques such as self-supervised learning, transfer learning, and multi-task learning, as well as
optimization techniques like hyperparameter search and the generation of explanatory information.

A representative deep learning model used in recent image analysis is the CNN-based VGGNet
model, which demonstrated that neural network depth directly contributes to improved image
recognition performance by effectively combining and pooling surrounding information for all
pixels using convolution kernels in a bottom-up approach (Simonyan & Zisserman, 2014). The
subsequently introduced Vision Transformer (ViT) proposed a top-down approach unlike traditional
CNN models, dividing images into multiple patches and learning the relationships between these
patches. This showed superior performance compared to existing CNN-based models on large-scale
datasets (Dosovitskiy et al., 2020) .

Additionally, various research is actively being conducted to optimize Al model performance and
improve generalization. The Decoupled Weight Decay Regularization (AdamW) technique,
proposed to solve the generalization problem of the Adam optimizer, improved optimization by
separately handling weight decay, thereby proving enhanced model performance (Loshchilov &
Hutter, 2017). Furthermore, EfficientNetV2 maximized the efficiency of CNN structures by



introducing new Fused-MBConv operations to reduce model size while increasing learning speed
(Tan & Le, 2021). Along with this, ERFNet (Efficient Residual Factorized ConvNet), a model
developed for real-time semantic segmentation, successfully reduced computational costs while
maintaining accuracy by utilizing residual connections and factorized convolutions (Romera et al.,
2017a, 2017b). This improvement in segmentation significantly enhanced identification
performance across various images.

Transfer learning and multi-task learning play crucial roles in further improving Al model
performance. Transfer learning techniques have proven to significantly enhance CNN-based image
classification and object detection performance by applying pre-trained models to new problems
(Torrey & Shavlik, 2010). Meanwhile, object detection and data augmentation techniques also serve
as important factors in improving Al model performance. For example, the Hybrid Task Cascade
(HTC) model showed high performance in image analysis by sequentially combining object
detection and mask prediction (Chen et al., 2019), while Fast and Flexible Image Augmentations
techniques contributed to improving model generalization performance by applying various data
augmentation methods (Buslaev et al., 2020). Multi-task learning (MTL) has shown effective results
in improving model generalization performance by simultaneously learning multiple related tasks
(Caruana, 1997).

Furthermore, SMOTE (Synthetic Minority Over-sampling Technique) is an oversampling
technique that complements minority class data in imbalanced datasets for tabular data, with
reported cases of improved data analysis performance (Chawla et al., 2002). Masked Autoencoders
(MAE) are gaining attention as effective unsupervised learning models in image analysis and general
image processing by utilizing self-supervised learning methods (He et al., 2022).

Beyond model performance, research on xAl (eXplainable Al) to interpret and enhance the
explainability of Al decision processes is also actively progressing. The Layer-CAM (Layer-wise
Class Activation Mapping) technique enables more precise object detection than the existing Grad-
CAM and presents an improved method to visually explain what CNN-based models are learning
from images (Jiang et al., 2021) . In particular, Layer-CAM can analyze activation maps not only in
deep layers but also in shallow layers of the network, helping to understand the model's prediction
process more intuitively.

1.2. Applications of Artificial intelligence in Medicine

The rapid advancement of image analysis using artificial intelligence (Al) is quickly expanding
its applications in the medical field. Particularly, Al has become an essential tool in areas such as
early disease diagnosis, medical image analysis, bio signal interpretation, and treatment planning.
This transformation has accelerated through both the evolution of deep learning technologies and



the digitization of medical data, inaugurating an era of highly accurate diagnostics and automated
analysis.

A prime example is image-based disease analysis. Al has demonstrated various achievements in
the field of image-based disease analysis. In pediatric bone age assessment research, CNN-based
regression models showed accuracy comparable to expert interpretations, reducing the mean
absolute error (MAE) to approximately 5 months, contributing to pediatric growth assessment and
orthopedic treatment planning. Al has also excelled in gender and age prediction research. Gender
prediction models using Stanford CheXPert and NIH Chest XRay14 datasets, gender determination
through spine X-ray analysis using DenseNet (with 99% accuracy for cervical spine and 98% for
lumbar spine), and forensic age estimation models using CNN trained on 1,875 pelvic X-ray images
from patients aged 10-25 years (recording lower MAE than traditional cubic regression) demonstrate
that the fusion of medical big data and artificial intelligence is expanding beyond diagnostic
assistance into forensic and personalized medicine fields. (Li et al., 2022; Ren et al., 2018) (Xue et
al., 2018) (Li et al., 2019) (Raghu et al., 2021)

Notably, research on gender determination through spine X-ray analysis using the DenseNet
model achieved impressive accuracy rates 99% for cervical spine and 98% for lumbar spine—
expanding the potential applications in forensic identification and medical Al technology (Xue et
al., 2018). Thus, Al-based image analysis is now expanding beyond basic diagnostic assistance,
making significant inroads into forensic identification and personalized medicine applications.

With advancements in diagnostic imaging assistance, multi-modal data integration approaches
are gaining increasing attention in Al-based medical analysis, transcending single-modal data
analysis. Multi-modal Al models that integrate and analyze different types of medical data
demonstrate higher accuracy and reliability than conventional single data-based models. This
methodology proves particularly valuable for disease diagnosis and treatment planning that require
complex and precise analysis.

A significant example is research on early Alzheimer's disease diagnosis, which recorded
enhanced diagnostic accuracy by integrating diverse bio-signal data including MRI, EEG
(electroencephalogram), and PET (positron emission tomography). This research highlighted the
possibility of non-invasively monitoring patients' conditions continuously and validated the
effectiveness of multi-modal approaches in diagnosing neurodegenerative diseases (Alberdi et al.,
2016).

Furthermore, in osteoporosis prediction research, a multi-modal AI model combining MRI and
CT data was developed, achieving a high accuracy of 98.90% and enhancing the reliability of
quantitative diagnosis compared to existing methods (Kiiglik¢iloglu et al., 2024). This represents an
important advancement in overcoming the limitations of traditional methods that rely on single
imaging techniques, introducing a new diagnostic paradigm that utilizes multi-modal data.



Al-based analysis utilizing chest X-rays is also advancing rapidly. The BIO-CXRNET model,
developed to predict mortality risk in COVID-19 patients, demonstrated high accuracy at 89.03%,
validating the strengths of multi-modal analysis (Rahman et al., 2023).

Multimodal deep learning has been actively applied across various medical fields. In
ophthalmology, a model combining fundus photographs and OCT images has improved the
diagnostic accuracy for retinal diseases (He et al., 2021). In the field of neuropsychiatry, multimodal
approaches have also shown superior performance compared to unimodal models (Wang et al., 2022).
Additionally, for thoracic disease diagnosis, a model integrating chest X-ray images and cough
sound data achieved high recognition accuracy (Kumar et al., 2022), demonstrating the potential
effectiveness of multimodal learning for early detection and accurate classification of diverse
diseases.

Al models that combine multi-modal data offer significant potential beyond basic disease
diagnosis, extending to treatment planning, disease progression prediction, and personalized
medicine. Additionally, multi-modal Al-based medical analysis technology is expected to play a
crucial role in predicting treatment outcomes and developing personalized treatment plans. Current
research is progressing toward integrating not only medical images (X-ray, MRI, CT, PET, etc.) but
also genetic data, bio-signal data, and patient history information potentially becoming a cornerstone
of precision medicine and personalized treatment.

In conclusion, the evolution of Al-based multi-modal fusion techniques is anticipated to further
enhance the accuracy and reliability of medical image analysis and disease diagnosis. As medical
Al continues to advance, it promises to deliver increasingly innovative and sophisticated diagnostic
and treatment solutions in clinical settings.

1.3. Applications of Artificial intelligence in Dentistry
1.3.1 Background of AI Growth in Dentistry

Interest in artificial intelligence (Al) in dentistry has been rising more steeply than in any other
field over the past five years. This spread of interest and research stems from the unique environment
and conditions of dentistry. There are three main reasons why dentistry is particularly suitable for
Al application.

First, dental imaging has a high level of digitization. Dental clinics have adopted digital
radiography equipment relatively early, and in most clinical settings, panoramic images, periapical
images, CBCT, and oral scans are all stored and managed in digital format. This richly accumulated
digital imaging data can be utilized as high-quality learning material necessary for Al training,
providing a favorable environment for effectively training artificial intelligence models. Considering



that 'sufficient amount of structured data' is the condition where Al develops fastest in the medical
imaging field, dentistry can be considered a highly suitable field for Al applications.

Second, the relative ease and clarity of image interpretation is also a strength of dentistry.
Anatomical structures of the jaw and oral cavity, dental caries, alveolar bone loss due to periodontal
disease, and lesions such as cysts or tumors appear relatively clearly in periapical radiographs. These
lesions have specific patterns, making them easier for image-based Al to identify.

Third, the anatomical features and structures of teeth have relatively little variation between
individuals, which is also a favorable condition for Al application. While there are individual
differences in the size, arrangement, and shape of teeth, they often show standardized structures in
terms of position, shape, and symmetrical structure compared to other organs or anatomical
structures. This allows for high performance even with less data and can contribute to producing
stable and consistent results in actual clinical applications.

Based on these characteristics, Al research that automates diagnostic and analytical tasks is
actively being conducted in the field of dentistry, with many studies showing higher accuracy and
efficiency than conventional methods.

1.3.2 Application Areas of Al in Dentistry

Currently, Al technology is being applied to various areas in dentistry and showing remarkable
achievements in each area. The main application areas can be broadly divided into tooth detection
and segmentation, dental caries and disease detection, dental prosthesis and implant analysis, gender
and age estimation, and diagnosis.

Al technology shows high accuracy in tooth detection and segmentation tasks, which are
fundamental to dental diagnosis. YOLOv7-based CNN models recorded F1-scores of 0.99 and 0.979
for tooth detection and numbering in bitewing radiographs, respectively (Ayhan et al., 2024), while
automated tooth segmentation methods using Mask R-CNN in panoramic radiographs achieved an
F1-score of 87.5% and an IoU of 87.7% (Lee et al., 2020). Additionally, algorithms for automatically
assigning tooth numbers in panoramic radiographs (Karaoglu et al., 2023) and Panoptic
segmentation techniques for automatically segmenting various structures such as maxillary sinuses
and mandibular canals have been developed(Cha et al., 2021).

In the area of dental caries and periodontal disease detection, Al models detecting periodontal
bone loss show performance similar to that of experts (Krois et al., 2019), and U-Net-based deep
learning models that automatically segment tooth features in periapical radiographs recorded 82%
sensitivity and precision in dental caries detection (Khan et al., 2021). Furthermore, DenseNet121-



based classification models for oral cancer detection achieved 99% precision and 100% recall (Warin
etal., 2021).

In research developing Al models to automatically detect dental prostheses, the Faster R-CNN
RegNetX model recorded the highest performance with 97.3% mAP and 77.1% AR (Celik & Celik,
2022). Additionally, in implant analysis and automatic classification system research, deep learning
methods using the VGG16 model recorded an AUC-ROC value of 0.975, accurately classifying
implant sizes (Park et al., 2023).

CNN-based deep learning models for age estimation using panoramic dental X-ray images
recorded a mean absolute error (MAE) of 2.95 years, achieving higher accuracy than conventional
manual methods (MiloSevi¢ et al., 2022), and a multi-task learning based Al model called
ForensicNet recorded an MAE of 2.93 years for age prediction and 99.2% accuracy for gender
classification (Park et al., 2024). These technologies show great potential as forensic identification
and pediatric dental diagnostic tools.

The application of Al technology in the field of dental diagnosis has shown particularly
noteworthy achievements. The Faster R-CNN Inception v2 model, which automatically diagnoses
dental conditions in panoramic radiographs, showed high performance in specific diagnoses such as
implants (sensitivity 96.15%) and crowns (sensitivity 96.74%), but relatively low performance in
detecting dental caries (sensitivity 30.26%) and calculus (sensitivity 9.34%) (Basaran et al., 2022).
Al models for diagnosing temporomandibular joint osteoarthritis (TMJOA) using panoramic
radiographs showed expert-level performance with a sensitivity of 73% and specificity of 82% (Choi
et al., 2021), and CNN-based Al models for detecting periapical lesions achieved higher diagnostic
performance than 14 out of 24 oral and maxillofacial surgeons (Endres et al., 2020).

Despite these achievements, current Al research in dental diagnosis shows several limitations.
The most prominent limitation is that most models are based on a single modality, particularly
radiographic images. In actual clinical settings, accurate diagnosis is made by comprehensively
considering various information such as patient symptoms, clinical examination results, and medical
records, not just radiographic images. Models based on single modalities demonstrate inherent
limitations in capturing the complexity of clinical situations, resulting in notable performance
decline particularly for diagnoses that require rich clinical context, such as dental caries or calculus
detection.

Additionally, the size and heterogeneity of datasets are also cited as major limitations (Albano et
al.,, 2024). Most current research uses limited-scale data, and issues with research method
heterogeneity and reporting quality make it difficult to compare between studies (Mohammad-
Rahimi et al., 2022). Several studies commonly emphasize that data standardization and dataset
expansion are necessary to overcome these limitations.



To address these inherent limitations and develop dental diagnostic AI models with enhanced
accuracy and reliability, we propose a multimodal approach that integrates diverse data sources. By
combining complementary data types, this approach offers richer information and contextual
understanding than single-modality methods, leveraging the unique strengths of each modality while
mitigating their individual weaknesses

In dental diagnosis, the multimodal approach can be implemented in the form of combining
radiographic image data and clinical examination data. Clinical examination data includes the
patient's symptoms and direct clinical observation results such as percussion, mobility, cold and hot
sensation, and electric pulp tests, providing important clinical information that is difficult to identify
in radiographic images. The combination of this clinical examination data and radiographic image
data is expected to enable more accurate and comprehensive diagnosis.

However, systematic integration of clinical examination data and radiographic image data in the
field of dental diagnosis is still limited, and research applying the latest Al techniques such as self-
supervised learning is even more scarce.

1.3.3 Scope and Objectives of the Study

The purpose of this research is to develop a multimodal artificial intelligence diagnostic model
that combines clinical examination data and periapical radiographic images using self-supervised
learning techniques, and to compare and evaluate its performance with single-modal models. Based
on the background previously discussed, this study aims to develop single-modal and multimodal
artificial intelligence models to improve dental diagnostic accuracy by utilizing the latest self-
supervised learning techniques and Masked Autoencoder.

The specific research objectives are as follows: 1) Develop a single-modal artificial intelligence
diagnostic model using clinical examination data, questionnaire results, and patient history to derive
diagnostic information that is difficult to obtain from imaging data.

2) Develop a single-modal artificial intelligence diagnostic model specialized in lesion detection
and dental structure analysis using dental radiographic images to complement the limitations of
image-based diagnosis.

3) Develop a multimodal artificial intelligence model by combining these two single-modal
models and evaluate the impact of integrated data utilization on diagnostic performance. Through
this, we aim to clearly demonstrate the advantages of multimodal fusion and present its applicability
in actual clinical diagnostic processes.

This research aims to present a new methodology that maximizes the advantages of each
modality while overcoming the limitations of single-modal approaches. In particular, by applying



self-supervised learning techniques, effective learning is possible even with limited labeled data,
and we aim to explore the complementary relationship between clinical examination data and
imaging data.

By developing more accurate and reliable dental diagnostic Al models through this study, we
ultimately aim to contribute to improving the diagnostic accuracy and work efficiency of dentists.
Additionally, the methodology of this research is expected to provide a foundation that can be
extensively applied to the diagnosis of various dental diseases in the future.

This study is expected to support clinicians in utilizing more accurate and reliable diagnostic
tools, ultimately contributing to improving the quality of dental care and enhancing patient safety.
In the following sections, 2. MATERIALS AND METHODS will demonstrate the stages and
methods of data collection and refinement for Al learning, and the design process for diagnostic
models based on two different types of data: radiographic images and clinical examinations,
ultimately explaining the learning process of two single models and one multimodal model. 3.
RESULTS will compare the performance of the single Al diagnostic model using radiographic
images with the single Al diagnostic model using clinical examinations and present the performance
results of the multimodal model that integrates these two approaches. 4. DISCUSSION will address
the challenges and iterative improvements encountered during the model development process and
outline future development directions, and finally, 5. CONCLUSION will present the concluding
remarks.



2. MATERIALS AND METHODS

2.1. Data Processing

2.1.1 Dataset Design

This study utilizes medical records and periapical radiographic images of patients who visited
the hospital with tooth-related diseases. The research aims to develop an advanced artificial
intelligence model that can achieve accurate diagnoses by learning from patient symptoms recorded
in medical charts, clinical tests conducted to diagnose the affected teeth, and periapical radiographic
images used to identify lesions.

2.1.2 Ethical Considerations

This study was approved by the Institutional Review Board (IRB) of Yonsei Dental Hospital,
Yonsei University (IRB approval number: 4-2018-0561). All data were anonymized to protect
participant confidentiality.

2.1.3 Data Collection

The data used in this study targets 1,344 patients who visited the Department of Advanced
General Dentistry at Yonsei Dental Hospital from 2013 to 2018. These patients were extracted based
on the diagnostic codes of dental caries, tooth fracture, and pulpitis, utilizing a total of 3,341 patient
records. The number of patients by diagnosis is summarized in Table 1. The collected data can be
broadly divided into clinical data and imaging data, which underwent stage-by-stage processing to
ensure successful research through research ethics compliance and effective data management. The
patient screening process can be seen in Figure 1.

2.1.4 Data Preprocessing

Data preprocessing is divided into two processes: transforming patient records and clinical test
records (tabular) from electronic medical records, and periapical radiographic images into tensor
formats that can be processed by artificial intelligence models.



Table 1. Number of dental clinical records extracted with primary diagnoses of dental caries,
pulpitis, and tooth fracture.

Focus Group Classification Characteristics Number of dental records (n)
Group 1 K.02 Caries 362

Group 2 K.04 Pulpitis 1914

Group 3 S.2 Fracture 1065
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Figure 1. Flow diagram of patient selection process.

Patients who visited the Department of Advanced General Dentistry at Yonsei Dental Hospital(2013-
2018) were initially screened based on having at least two clinical examination records at initial
diagnosis and both periapical and panoramic X-rays. After additional screening based on teeth with
clearly verified treatment results and qualitative validity of X-rays and clinical examination records,
a total of 705 patients were ultimately included in the study.
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To utilize data from electronic medical records, patient records and clinical test records were
transformed into Excel format. The extracted data were stored with anonymized numbers and limited
to basic data such as age, gender, chief complaint (C.C.), and clinical tests conducted on the tooth
targeted by the C.C.

In the clinical examinations, seven fundamental tests were conducted to assess pulp vitality and
sensitivity, as well as the condition of the periodontal ligament and alveolar bone. The percussion
test evaluates the response of the periodontal ligament to mechanical stimulation. Mobility is
assessed by manually checking the movement of the tooth to evaluate the integrity of periodontal
support structures. The bite test applies functional force to detect localized pain or cracks in the tooth
structure. The air stimulus test evaluates dentin hypersensitivity by applying a blast of cold air, while
the cold test assesses the response of pulpal sensory nerves using thermal stimuli. The heat test helps
identify irreversible pulpitis through abnormal or prolonged pain responses. Lastly, the electric pulp
test (EPT) determines the vitality of the pulp by evaluating sensory nerve response to electrical
stimulation. Each of these tests was recorded using a five-level scale: +++, ++, +, —, and “no test,”
as referenced in (Mainkar & Kim, 2018). The extraction process from the patient records is
illustrated in Figure 2.

Periapical radiographic image data were initially acquired in DICOM file format, which contains
subject information. For anonymization purposes, only the image information was extracted and
saved as PNG files without information loss. Simultaneously, these were checked against panoramic
radiograph to verify that there were no errors in the periapical radiographic images. During
anonymization, each dataset was assigned a new number for file naming.

All patient names were anonymized, and to connect the two types of data, arbitrary numeric
codes (auto-increment) were assigned to each subject using the numbers given instead of names as
indices, linking them to the corresponding image filenames. The analysis of the stored data is shown
in Table 2.

Subsequently, all personal information, other information unrelated to this study, and DICOM
files containing personal information were deleted for conducting the experiment.
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Patient data Anonymization Sex, Age, #
Percussion
Mobility
.. Clinical Bite
Chn;)c;tlaTeSt Record Cold
Review EPT
Air
Hot
C.C_Pain
C.C_Mobility
Chief . o . C.C_Swelling
Complaints Categorization C.C_Sensitivity
C.C_NoSymptom
C.C_Unknown
Pathology, . : Caries
Diagnosis, Dlggnoslls Fracture
Treatment Verification Pulpitis

Figure 2. Data extraction and processing workflow from electronic dental records

This figure illustrates the systematic extraction and categorization of patient data from electronic
dental records. Patient demographics are anonymized, clinical test parameters are standardized into
diagnostic groups, chief complaints are categorized into six symptom types, and diagnostic
information is processed to verify physician diagnoses across three dental pathologies: caries,
fracture, and pulpitis. This structured workflow enables creation of labeled datasets for multimodal
Al diagnostic system training.
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Table 2. Number and data types of extracted clinical information from dental records.

Clinical info Caries Fracture Pulpitis TOTAL
N 244 282 179 705
SEX
Male 105 133 97 335
Female 139 149 85 370
Age
M 48.7 53.7 56.0 52.6
Percussion 213(138) 258(89) 167(76)
Mobility 190(155) 243(125) 150(103)
Bite 46(21) 57(16) 44(11)
Cold 174(40) 131(71) 105(27)
EPT 33(11) 45(29) 16(11)
Air 22(8) 8(4) 16(5)
Hot 1(0) 4(1) 0

clinical data exist(negative)
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2.2. Single-Modal Model Based on Clinical Test Data

2.2.1 Variables Processing

The clinical data stored for this study consists of categorical, numerical, and ordinal variables,
each requiring appropriate preprocessing methods to convert them into a format suitable for artificial
intelligence learning. This process includes various procedures such as handling missing values,
encoding, and normalization.

Categorical Variables In this study, categorical variables included 'gender m' (gender),
'CC1_Gum Swelling' (presence of gum swelling), 'CC1_Pain' (presence of pain), 'CC1_Sensitivity'
(presence of sensitivity), and 'CC1_No Symptoms' (absence of symptoms). As these are nominal
data without concepts of size or order, missing values were replaced with the mode, and One-Hot
Encoding was then applied to convert them into binary vector format. This helps the model perform
operations between variables and is effective in maintaining the unique characteristics of each
category.

Numerical Variables The numerical variable 'age' showed a skewed distribution rather than a
normal distribution. Accordingly, a Robust Scaler was applied to normalize based on the median and
quartiles to reduce the influence of outliers. Additionally, Power Transformer and Quantile
Transformer were also comparatively analyzed, but as they did not show significant performance
differences in actual experimental results, the Robust Scaler was ultimately adopted.

Ordinal Variables Clinical examination items such as 'Percussion’, 'Mobility', 'Cold', 'EPT', and
'Air' were treated as ordinal variables with a clear order. Like categorical variables, missing values
were replaced with the mode, and Ordinal Encoding was used to convert them into numerical values
while maintaining order information. Subsequently, a Min-Max Scaler was applied to normalize
values between 0 and 1. For variables showing asymmetric distributions, a Quantile Transformer
was used supplementarily.

Through these preprocessing strategies, the unique characteristics of variables were preserved
while effectively utilizing them for model learning. In particular, scaling and encoding methods
appropriate to variable types played an important role in improving model performance and ensuring
consistency with clinical interpretation.

2.2.2 Feature Processing

This study selected optimal preprocessing methods considering the statistical characteristics and
data distributions according to various variable types in clinical data. Comparative experiments were
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conducted on various methodologies, and appropriate strategies were adopted based on model
performance and processing efficiency.

First, for missing value imputation, KNN Imputer and Iterative Imputer (MICE) were compared.
KNN Imputer has the advantage of simple computation by using the average of adjacent samples to
replace missing values but is sensitive to outliers. On the other hand, Iterative Imputer allows for
more sophisticated replacement by performing repeated predictions based on regression but requires
more computation and may assume multivariate normality. Both methods did not show significant
differences in actual model performance, and the KNN Imputer was ultimately chosen considering
efficiency and simplicity.

In comparing data scaling methods, Min-Max Scaler, Standard Scaler, and Robust Scaler were
tested. Min-Max Scaler normalizes all data between 0 and 1, which is intuitive but very sensitive to
extreme values. Standard Scaler adjusts the mean to 0 and standard deviation to 1, making it suitable
for normal distributions, but also vulnerable to outliers. In contrast, Robust Scaler has the advantage
of minimizing the influence of outliers by basing on the median and quartiles. In this study, the
Robust Scaler, which is robust against outliers, was finally selected for 'age,' the only numerical
variable.

For normalizing the distribution of numerical variables, PowerTransformer and
QuantileTransformer were compared. PowerTransformer is a technique that transforms non-normal
distributions closer to normal distributions through Yeo-Johnson or Box-Cox methods, with the
advantage of maintaining linearity between variables. QuantileTransformer is a quantile
normalization method based on cumulative distribution, which can be particularly useful for
variables with extremely large skewness. In this study, the QuantileTransformer was selectively and
supplementarily used in parallel, considering the distribution characteristics of each variable.

These preprocessing strategies based on variable characteristics played an important role not only
in stability and performance improvement of model learning but also in ensuring consistency and
reproducibility of clinical interpretation. Furthermore, the preprocessing design of this study can be
said to consider both statistical reliability and practicality, as it verified the validity of the adopted
methods through comparative experiments between various approaches.

2.2.3 Data Filtering

In this study, a data filtering process was performed on a total of eight clinical examination items
(Percussion, Mobility, Bite, Air, Cold, Hot, EPT, CC). This process aimed to ensure data reliability
and quality, and to increase analytical precision and efficiency by removing variables that were
unnecessary for model learning or difficult to interpret.
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Among the clinical items, the Bite Test was distinguished simply as '+' or '-', making it difficult
to view as an ordinal variable, and limited in terms of meaningful information from an analytical
perspective. Accordingly, such variables were considered categorical variables and ultimately
excluded from the analysis. Additionally, the Hot test, which had an extremely low frequency of
occurrence at only 2 out of 776 cases in the entire dataset, was also excluded as it was determined
not to make a substantial contribution to learning.

In the case of the CC (Chief Complaint) item, due to the characteristics of university hospital
electronic records, there were difficulties in data analysis using the original sentences as they
contained referral notes and administrative phrases. Therefore, while a meaning-based approach was
attempted, there were limitations in natural language processing-based interpretation due to the
characteristics of unstructured sentences and diversity of expressions. Consequently, in this study,
the expressions frequently used by patients were refined and simplified into five representative
categories (pain, mobility, gum swelling, hypersensitivity, no symptoms), and the CC items were
categorized based on these expressions (Brunsvold et al., 1999).

This data filtering procedure was a strategic measure to more clearly define the data to be used
for learning, reduce noise, and simultaneously ensure clinical validity and interpretability. As a result,
a refined dataset that could enhance the stability and generalization performance of the model was
constructed.

2.2.4 Imbalance Handling

During the learning and validation phases, appropriate cross-validation methods and sampling
strategies were applied considering the class imbalance problem in the data. The schematic diagram
of this process is presented in Figure 3. In particular, since the classification problem for patient
conditions had an imbalanced distribution among classes, Stratified Cross Validation was used
instead of simple K-fold cross-validation. This allowed for maintaining balanced class ratios in each
fold, reducing bias in evaluation metrics and enabling more consistent model performance
measurement.

In addition, to complement the learning performance of minority classes in a situation where the
data size itself was not large, oversampling using SMOTE (Synthetic Minority Oversampling
Technique) was performed. SMOTE is a technique that generates new synthetic samples based on
existing minority class data, and unlike simple replication, it has the effect of increasing data
diversity while preserving the spatial characteristics of surrounding data. This approach created a
balanced learning environment that enabled more equitable representation of all classes within the
model.

Furthermore, data augmentation was attempted by applying Gaussian Noise Augmentation. This
was a strategy to improve generalization performance by randomly adding small noise to the input
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values of numerical variables, preventing the model from reacting excessively to minor changes in
input values. Considering that measurement deviations can exist in actual clinical data, this noise-
based augmentation had validity in reflecting realistic input conditions.

2.2.5 Self-supervised learning

The influence of data quantity in artificial intelligence learning is absolute and acts as a key factor
in the generalization ability and performance improvement of models. However, in the medical field,
especially in the case of dental clinical data, there are practical constraints in securing large-scale,
high-quality data due to high labeling costs and sensitivity in terms of personal information
protection. This frequently leads to problems such as data imbalance, lack of labels, and limitations
in sample size, and the potential application of Self-Supervised Learning (SSL) is gaining attention
as a way to overcome these limitations.

Self-Supervised Learning is a learning method that learns potential representations through
pretraining from data without explicit labels, and based on this, produces excellent performance with
only a small amount of label information for downstream tasks. SSL primarily sets up pretext tasks
and proceeds with learning by generating supervision from the data itself, such as masking and
restoring parts of an image, matching temporal order, or comparing similar/dissimilar pairs.

The biggest advantage of these SSL techniques is the reduction of labeling costs and mitigation
of imbalanced data problems. In medical settings, pathological state data is often significantly less
compared to normal data, and SSL provides the possibility to increase learning efficiency for such
rare classes and maximize performance with a relatively small amount of annotated data.

Furthermore, SSL has high complementarity with Multimodal Learning in that it is suitable for
processing various forms of data together. In integrating data located in different representation
spaces such as radiographs, clinical tabular data, or text-based medical history information, SSL is
evaluated as an effective approach for constructing integrated representations by independently
learning the expressiveness of each modality and then combining or making them interact.

Therefore, in this study, in the process of developing an artificial intelligence diagnostic model
based on dental clinical data, Self-Supervised Learning methods were introduced as a core strategy
to solve the problems of limited label numbers and imbalanced data structure, and to effectively
implement a multimodal structure.
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Figure 3. Overview of the data preprocessing and training pipeline.
All data were stratified and split into training (80%), validation (10%), and test (10%) sets.
Clinical test data were processed using SMOTE to address class imbalance, while periapical

radiographic images underwent data augmentation. Both modalities were used for training and
evaluation of the diagnostic models.
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2.2.6 Clinical Test Based Deep Learning Model

When starting the research, the problem was initially perceived as distinguishing only one
specific lesion from each patient’s dataset. However, based on the actual presence of lesions in
patients, the problem required applying independent Sigmoid functions to each class node rather
than Softmax. Therefore, this research is defined as a multi-label classification problem considering
the possibility of simultaneous expression of multiple lesions, rather than a multi-class classification.
Consequently, considering cases where two or more lesions could appear simultaneously in a single
image or clinical data sample, the model was designed to predict independent probability values for
each lesion class in the output layer.

For the actual learning, we utilized eight types of clinical examination data: Percussion, Mobility,
Bite (occlusion test), Air (air stimulation), Cold (cold stimulation), Hot (heat stimulation), EPT
(electric pulp test), and C.C. (categorized subjective symptoms). For this purpose, in the MLP-based
output layer, each node predicts the presence of the corresponding lesion as a probability value,
which can be binarized independently as 0 or 1 for all classes.

To ensure stable learning of the model, we applied Batch Normalization (BN) to adjust the data
distribution and improve the learning speed of the neural network. The model structure consisted of
input layers, 2-3 hidden layers, and as many output nodes as the number of classes. In the hidden
layers, nonlinear activation functions such as ReLU and dropout were applied to prevent overfitting.
As shown in Figure 4, according to the architecture of the designed neural network, the first
transformation of the network was applied using the structure: Linear (17 — 1024) - Batch
Normalization (BN) - LeakyReLU activation function. Subsequently, the structure of Linear (1024
— 512) - BN - LeakyReLU was repeatedly applied to progressively enhance the feature learning
capability of the network. The initial weights of the neural network were set using the He
initialization method.

In this study, to maximize the effect of representation learning and improve classification
performance with limited supervised learning data, we trained the model by combining
Autoencoder-based unsupervised pretraining and transfer learning strategies. In the initial stage, we
designed an Autoencoder structure to restore input data, and through this, trained the encoder part
to effectively extract latent representations of the input space. The Autoencoder consists of an
encoder that compresses input data and a decoder that restores it to its original form. In this study,
we applied a multilayer perceptron (MLP) structure to the encoder.
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Figure 4. Architecture of clinical data and capsule network outputs.

In this multi-binary classification structure, the loss function was also applied as an extension of
Binary Cross Entropy. Initially, BCEWithLogitsLoss (including sigmoid) was used to calculate the
binary cross-entropy between the predicted probability and the correct answer for each class. Later,
Focal Loss was applied to more effectively correct class imbalances. In a multi-label structure, Focal
Loss calculates losses individually for each class and provides the effect of focusing on lesion classes
that are not well predicted in the early stages of learning by assigning higher weights to predictions
with high difficulty.
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Autoencoder training was conducted in an unsupervised manner, using Mean Squared Error
(MSE) as the reconstruction loss to minimize the difference between input and restoration. Through
this process, the encoder was trained to have the ability to summarize only the essential
characteristics from the original input, which provided a favorable foundation for generating
generalized representations suitable for subsequent classification tasks.

The model concatenates clinical examination features with capsule network outputs derived from
radiographic images. The fused input passes through multiple fully connected layers with Batch
Normalization and LeakyReLU activations. The model outputs independent predictions for dental
caries, tooth fracture, and pulpitis using a multi-label classification structure. essential
characteristics from the original input, which provided a favorable foundation for generating
generalized representations suitable for subsequent classification tasks.

After completing Autoencoder training, we separated the decoder and extracted only the pre-
trained encoder to transfer it as a feature extractor for the classification model. This transferred
encoder showed faster convergence and higher initial performance than randomly initializing
weights and could more effectively reflect the structural relationships between complex clinical and
image-based variables. The classifier consisted of new fully connected layers connected after this
encoder, and in the supervised fine-tuning stage, the entire network was retrained in an end-to-end
manner.

Finally, we utilized a Capsule Network (CapsNet) based model to train the distinction of three
diseases: Dental Caries, Tooth fracture, Pulpitis,. In this process, the Capsule Network is designed
to learn spatial relationships better than traditional CNNs, enabling precise diagnosis based on
clinical examination data. Through this process, we effectively extracted patterns from clinical data
and enabled the model to learn key information necessary for dental diagnosis.

Each output node generates independent probability outputs through sigmoid functions, which
are interpreted as the probability of presence for each lesion. Training was performed based on the
AdamW optimization algorithm, applying warm-up (starting with a very low learning rate and
gradually increasing it) and a scheduler that reduces the learning rate under certain conditions.

Furthermore, to evaluate the impact of data augmentation on model performance with tabular
data, in addition to data oversampling techniques such as SMOTE, we analyzed the performance
differences according to the application of Gaussian Noise. The results showed slight performance
improvements for classes with fewer data. However, overall performance changes were minimal,
which seems to be due to the stability of the model structure and variables used. Through these
learning methods, we optimized the model to comprehensively analyze various clinical examination
results and classify dental diseases with high accuracy. To enhance the reproducibility and reliability
of the model, each experiment was repeated multiple times under identical conditions
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2.3. Single-Modal Model Based on periapical radiographic images
2.3.1 Radiological Image Processing

The initially stored radiographic image data underwent various preprocessing and augmentation
techniques to improve image quality and ensure data diversity.

In this study, we primarily used PA (periapical) images converted to PNG format. To minimize
the impact of image quality on analysis results, we implemented a procedure to quantify image
sharpness through contrast and density adjustments and filter out low-quality images in advance
based on these measurements..

The degree of blur in an image can generally be determined by the extent of high-frequency
component loss. In this research, we quantified the sharpness of each image using the Variance of
Laplacian based on the Laplacian operator. This method is based on edge information in images;
sharper images have higher Laplacian variance values, while blurrier images have lower values.
After calculating the sharpness index for all images, we removed images in the bottom 1% of the
distribution from the dataset. This measure was taken to filter out quality-degraded images caused
by camera shake or focus deviation during capture, thereby minimizing noise that could negatively
impact learning. This process was performed according to quantitative criteria and effectively
contributed to removing samples that were likely unable to be analyzed clinically.

This image quality-based filtering played a crucial role in ensuring the reliability and consistency
of data that the model would learn, without drastically reducing the overall amount of data.
Furthermore, it allowed the subsequent data augmentation and normalization processes to be
reflected without distortion, ultimately contributing to improved model performance stability and
interpretability.

Subsequently, we configured a preprocessing pipeline using the Albumentations library and
torchvision to enhance generalization performance necessary for model learning while preserving
image features.

The entire pipeline is structured in the following order. First, we applied CLAHE (Contrast
Limited Adaptive Histogram Equalization), a local contrast correction technique for enhancing
image contrast. CLAHE equalizes histograms within a limited range in each part of the image,
enhancing local contrast without distorting the overall brightness distribution.

Afterwards, images were resized to a fixed resolution to match the model input size, and in case
some images were too small, padding was performed through PadlfNeeded to ensure a minimum
size (900x900 pixels). This measure was taken to maintain consistent input forms even with images
of various sizes.
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This series of preprocessing steps contributed to maximizing the model's generalization
performance while maintaining image quality and enhancing the reliability and interpretability of
the overall analysis results.

2.3.2 Data Augmentation

Various data augmentation techniques were applied to the preprocessing pipeline to improve the
generalization performance of the image data. This process was designed to enable the model to
respond effectively to diverse imaging conditions that might occur in real clinical environments.

First, horizontal and vertical flipping were applied through HorizontalFlip and VerticalFlip, and
image rotation, position shifting, magnification, and reduction were performed using
RandomRotate90 and ShiftScaleRotate techniques. In particular, ShiftScaleRotate includes rotation
within a maximum range of 20 degrees, helping the model become robust to variations in orientation
and placement.

Additionally, to reflect more nonlinear forms of transformation, ElasticTransform was used to
locally deform pixels within the image, and GridDistortion was applied to allow learning of
structural distortions. Furthermore, RandomGamma was used to randomly adjust gamma values to
simulate brightness changes, and GaussianBlur was applied with a low probability to enable learning
even in image conditions including blur.

These augmentation techniques help the model adapt to various types of images while
emphasizing fine structures such as periapical lesions, ultimately enabling the neural network to
learn more robust and generalized features.

After all augmentations and transformations were applied, pixel values were normalized based
on the mean and standard deviation of ImageNet IMAGE_MEAN, IMAGE _STD) to consistently
adjust the distribution of data, and ToTensorV2() was applied to convert the images into tensor
format that can be input to PyTorch models.

Meanwhile, this pipeline was configured to process bounding box information as well,
considering object detection model training. Through BboxParams settings, the bounding box
format was designated as pascal_voc, and only objects that satisfied a certain area (min_area=1) and
minimum visibility (min_visibility=0.1) were maintained. Additionally, to prevent bounding boxes
from going outside the image during the image augmentation process, the clip=True option was
applied to ensure that box coordinates always remain within the image.

This augmentation processing pipeline was designed considering the characteristics of
radiographic images, with the aim of maximizing the model's generalization performance and
robustness while maintaining data quality.
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2.3.3 Data Labeling

In this study, we performed direct bounding box labeling work on image data. This was a strategic
approach to clearly recognize the differences in interpretation methods between clinical data and
image data, and to overcome the specificity of image-based analysis. While clinical data is based on
indirect information such as patient subjective symptoms or examination results, image data has the
characteristic of allowing direct observation of the structural form and location of lesions.
Accordingly, by directly marking and quantifying visually clearly identifiable lesions, we aimed to
provide the model with more specific information about the lesions themselves.

The labeling work in this study was performed using the SLAM (playidea lab) platform, targeting
a total of 776 periapical radiographs. Labeling was based on BOX unit labeling, and was performed
according to consistent criteria by fixing the types of lesions into four classes (dental caries, tooth
fracture, bone loss, PDL space widening).

The criteria for interpreting lesions were based on existing radiographic diagnostic guidelines for
identifying dental caries and periapical lesions in the jawbone. In particular, dental caries existing
on the occlusal surface but not visible in the image were excluded from labeling targets, and dental
caries identifiable in the image were all included according to radiographic interpretation criteria
(Pitts, 2001). The distinction between dental caries and tooth fractures was based on the presence or
absence of straight lines appearing at the boundary of radiolucency, and in cases where it was
difficult to differentiate between periapical lesions and bone loss due to periodontitis, electronic
medical records were used as supplementary material (Petersson et al., 2012).

Additionally, although thickening of the periodontal ligament space (PDL space widening) is
often difficult to definitively categorize as a clear lesion, it was included in the labeling target as it
was judged to be an indirect indicator reflecting percussion response or pulp sensitivity in clinical
examinations. In this case as well, images with ambiguous or unclear interpretations were interpreted
by referring to medical records.

The labeling process did not take place as a one-time event but included repetitive refinement
processes. After the first manual labeling was completed, label cleaning was performed using the
detection results of an artificial intelligence model trained based on that data. An example of label
cleansing can be seen in Figure 5. This was done by having humans recheck and modify the label
positions generated by Al, and the precision of labels was increased by conducting repeated labeling
and inspection work three times.
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2.3.4 Self-Supervised Learning with Masked Autoencoder

In the field of medical image analysis, acquiring labeled data is often difficult, which serves as
one of the biggest constraints in Al model development. Self-Supervised Learning (SSL) is a
powerful learning method to overcome these limitations, allowing data to be learned without labels.
A schematic diagram of SSL can be seen in Figure 6. Masked Autoencoder (MAE) is a
representative technique used in the image domain.

The Masked Autoencoder (MAE) is structured to randomly mask portions of an image and then
learn to restore those regions. As shown in Figure 7, the model develops the ability to understand
and reconstruct the structural, morphological, and semantic features of the image on its own. MAE
is trained to infer the whole based on the remaining parts by hiding some portions rather than directly
learning the entire input image, making it more sensitive to the core patterns of the image or
surrounding structures of lesions. Especially in cases like radiographic images with high resolution
but ambiguous lesion boundaries, MAE has the advantage of learning more sophisticated visual
representations compared to conventional supervised learning-based models. In this study, we
applied MAE-based SSL to radiographic image data, establishing a learning foundation that can
effectively grasp the structural information the data possesses. This can play an important role in
improving the performance of subsequent classification and detection models.

Providing additional labeled data to a pre-trained model using a self-supervised approach plays
a crucial role in precisely adjusting the model's learning direction and enhancing its ability to
perform specific diagnostic tasks. In particular, in this study, we conducted box-based labeling for
major lesions such as dental caries, tooth fracture, bone loss, and PDL space widening on
radiographic images, enabling the model to learn clinical judgment abilities beyond simple
restoration. This brings about the effect of improving the performance of lesion detection and
classification by assigning diagnostic-centered objectives to the restoration-centered MAE.
Consequently, this strategy allows for securing both model accuracy and practicality with only a
limited number of labels, significantly increasing the potential for application in actual clinical
settings.

To learn the complex structural representations of X-ray images, we first performed pre-training
using a Vision Transformer (ViT)-based Masked AutoEncoder (MAE). MAE is a self-supervised
learning method based on the Vision Transformer (ViT) structure that masks a certain percentage of
the input image and then learns to restore the entire image from the remaining patches.

In this study, we divided the original X-ray images into fixed-size patches, randomly masked
some of them (10% was used in this experiment), and learned latent representations by inputting the
remaining patches into the encoder. The decoder was then configured to restore the entire image and
Mean Squared Error (MSE) was used as the loss function at the pixel level.
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Figure 5. Example of label cleansing process using periapical radiograph.

Ground truth labels (green boxes) and Al-predicted labels (red boxes) are shown for apical lesion,
PDL space widening, bone loss, and tooth fracture. The image illustrates the manual correction
process of Al-generated annotations to improve labeling accuracy during the development of the
object detection model.
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Figure 6. Self-supervised pretraining and transfer learning workflow.

An unlabeled dataset is first used to pretrain a model through a self-supervised learning approach,
enabling the model to extract generalizable visual representations. The pretrained model is then fine-
tuned on a labeled dataset (target dataset) to perform supervised learning for final diagnostic
classification tasks.
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Figure 7. Architecture of the Masked Autoencoder (MAE) for self-supervised learning.

The input image is divided into patches, and a subset is randomly masked. The visible patches are
passed through an encoder to generate latent representations, which are then reconstructed by a
decoder. The model learns to predict the original image from the masked input, enabling effective
feature learning without labels.
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In the MAE structure, since the encoder performs computations only on unmasked patches, it
has the advantages of high computational efficiency, faster learning, and effective learning of global
representations. The encoder pre-trained in this manner was later transferred to lesion detection or
classification tasks, particularly serving as a robust feature extractor in X-ray images containing
various anatomical structures and disease patterns.

As another pre-training approach, we applied an image restoration (autoencoding) method using
a U-Net-based CNN structure. U-Net consists of an encoder-decoder structure and can learn
meaningful visual representations through the process of compressing the input image into a low-
dimensional latent space and then restoring it to its original resolution Transformer-based techniques
and CNN-based approaches employ fundamentally different processing strategies: the former
utilizes a top-down mechanism to analyze relationships between distinct image regions, while the
latter implements a bottom-up approach that prioritizes local pixel neighborhood connections . In
our methodology, we enhanced the input X-ray images through various data augmentation
techniques including Gaussian noise application and rotational transformations before strategically
applying masking patterns. The U-Net architecture was then trained to accurately reconstruct the
original unaltered images from these modified inputs. This process is similar to the Denoising
Autoencoder approach and was designed to guide the encoder to focus on extracting important
structural features from the input images. The encoder part of U-Net performs progressive
abstraction of the image through multiple convolutional blocks and pooling layers, and shares
information with the decoder through skip connections, allowing it to learn global representations
while maintaining detailed information. After pre-training was completed, the decoder was removed,
and the encoder was transferred as a feature extractor for downstream tasks. This encoder was later
used as the backbone for detection or classification models, and showed improvements in both
convergence speed and final performance through fine-tuning from the pre-trained state.

These two approaches utilize the advantages of Transformer-based and CNN-based visual
representation learning, respectively, and in this study, we comparatively applied both models
depending on experimental conditions. MAE showed strengths in global structure representation,
while U-Net excelled in local detail representation, and there were performance differences
depending on specific lesion types. This comparison provides meaningful implications for designing
pre-training strategies suitable for the characteristics of X-ray images.

2.3.5 Radiological Model Training

Based on the architecture shown in Figure 8, full-scale supervised fine-tuning was conducted
across various backbone network structures as described in the main text, with controlled levels of
image augmentation. In this process, various types of intensity-adjustable augmentations such as
contrast enhancement, rotation, and elastic deformation were designed and applied to the input
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images. These augmentations enabled the model to learn robust representations that could
accommodate different types of image distortions, inter-patient differences, and even intra-patient
variability. The generalization performance of the model varied depending on the extent of
augmentation, even within the same backbone structure. After each convolution and linear layer of
the network, Batch Normalization was applied to reduce internal covariate shift and secure both
learning speed and convergence stability. This particularly helped maintain smooth gradient flow in
deep model structures and contributed to alleviating instability that could occur in the early stages
of learning.

Additionally, several optimization strategies were implemented in parallel to improve the model's
learning stability and generalization performance. First, to prevent overfitting and suppress the
growth of unnecessary parameters, an L2 regularization-based Weight Decay term was added to the
common Binary Cross Entropy or Focal Loss functions. For this, AdamW (Adam with decoupled
weight decay) was adopted as the optimization algorithm. Unlike the original Adam, AdamW applies
the weight decay term separately from learning rate updates, which can more accurately reflect the
meaning of L2 regularization and is generally known to show better generalization performance in
various deep learning benchmarks.

For learning rate settings, warm-up scheduling and learning rate decay strategies were combined.
Initially, starting with a low learning rate and linearly increasing it up to a certain step through a
warm-up phase, the learning rate was then gradually decreased based on validation loss or epoch
count. This allowed the model to be free from unstable parameter updates in initial learning and
induced stable convergence.

Furthermore, systematic exploration (hyperparameter optimization) was performed on key
hyperparameters such as model structure, learning rate, batch size, dropout ratio, and weight decay
intensity. In this process, Random Search and Grid Search were conducted in parallel, and multiple
combinations were evaluated based on performance metrics (AUC or macro F1). In some
experiments, Bayesian Optimization techniques were also introduced to increase search efficiency,
and based on the experimental results, optimal learning settings were determined for each backbone
structure.

Through this advanced learning pipeline, we were able to systematically compare and analyze
the differences in classification performance of models according to the type of backbone network
and input augmentation level. While increasing augmentation intensity contributed to performance
improvement in certain structures, excessive transformation sometimes caused performance
degradation. This was confirmed to act as an important design element that interacts with the depth
and complexity of the model, and whether it was pre-trained.
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Figure 8. Workflow of radiographic image classification using a neural network.

The process consists of four main stages: (1) Preprocessing of periapical radiographic images, (2)
Labeling of dental lesions, (3) Neural network training using labeled data, and (4) Classification
output showing predicted lesion regions. This pipeline enables automated diagnosis through

supervised learning.
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2.4. Multi-modal model
2.4.1 Multi-modal model Structure

The multimodal artificial intelligence model designed in this study adopted a strategy that
simultaneously utilizes two different modalities, namely clinical data and radiographic images, to
overcome the limitations in representational capacity that may appear in conventional approaches
using only single-modality data.

As can be seen in the provided Figure 9, clinical examination data consists of numerical and
categorical features, and this clinical information first undergoes an encoding process to be
converted into a high-dimensional vector representation. Through this, various clinical
characteristics are transformed into meaningful numerical representations, and feature extraction is
ultimately performed through a Multi-Layer Perceptron (MLP).

Meanwhile, radiographic images are data in the form of images containing spatial characteristics
and pathological visual information, which were learned using a CNN-based image encoder. In this
study, we applied the latest deep learning architectures such as EfficientNet V2 and Vision
Transformer (ViT) as image encoders to extract complex image features more elaborately and
effectively. In this process, periapical radiographic images are standardized to an input data size of
640x%640, maintaining consistent quality and resolution when input to the encoder.

Clinical information and image information that have gone through two independent encoding
processes then move on to the fusion stage. In this model, feature vectors formed in different
representation spaces were integrated using an Attention mechanism.

The Attention mechanism selectively emphasizes only important information from data of
different modalities, allowing effective integration of complementary information between the two
modalities. Through this, the interaction between spatial pathological information obtained from
images and numerical and categorical patient characteristics extracted from clinical data is more
clearly modeled, enabling more sophisticated prediction of the patient's condition.

After Attention-based fusion, final prediction (¥) is performed through an additional MLP, and
in the model's learning process, a Focal Loss function was applied to effectively handle the class
imbalance problem. Focal Loss helps perform model learning more efficiently by assigning higher
weights to diagnostic classes that appear relatively less frequently.
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Figure 9. Architecture of the proposed multimodal deep learning model.

The model integrates dental clinical test data (top path) and periapical radiographic images (bottom
path). Clinical data is encoded and passed through a multilayer perceptron (MLP), while
radiographic images are processed using a convolutional or transformer-based encoder (e.g.,
EfficientNet V2 L or ViT L). The outputs from both modalities are fused via an attention
mechanism, followed by classification through an MLP. Focal loss is used to address class imbalance
in multi-label classification.
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2.4.2 Multi-Modal Modeling

The first approach is a structure that individually encodes each modality, simply combines
(concatenates) them into a single vector, and then performs the final prediction through a multi-layer
perceptron (MLP). Clinical data consists of standardized numerical and categorical inputs, which
were transformed into latent representations by inputting them into an MLP-based clinical encoder.
Image data was converted into abstracted feature maps or flattened embeddings through a pre-
trained CNN or ViT-based encoder. Subsequently, the two encoding results were simply
concatenated to create a merged vector, which was then passed through additional MLP layers to
perform the final classification.

This method enables effective fusion under the assumption that the two data types are stably
represented individually, and it is simple to implement with fast learning. In this study, this structure
was set as the baseline multimodal model to serve as a reference point for comparing performance
with other fusion methods.

The second approach was designed to more elaborately reflect the information flow and
correlation structure between the two modalities by applying cross-attention or self-attention-based
interaction techniques rather than simple combination. In this structure, after independently
encoding both clinical data and image data, cross-attention operations were performed using the two
representations as queries, keys, and values for each other. For example, by using the clinical
encoding result as the query and the image encoding result as the key-value, the model can learn
which patterns in the image should be focused on based on the clinical information, and the reverse
direction can be designed similarly.

This method provides flexibility to dynamically adjust the relationship between modalities
during the learning process by weighting the interaction between each modality based on attention
rather than linear combination. Especially in medical image analysis problems where the areas to
focus on in images may vary depending on the clinical context, such attention-based structures
provide powerful expressiveness.

These two fusion strategies were compared under the same dataset and learning conditions, and
while the attention-based structure showed increased model complexity and longer learning times
in terms of performance, the simple combination method demonstrated structurally simple yet stable
convergence characteristics, showing strengths in terms of deployment potential. However, neither
method showed significant performance improvements in integrated representation learning
between modalities compared to single-modality-based models. This is interpreted as indicating that
clinical data and image information contain differences that are not mutually complementary.
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2.4.3 Multi-modal Detection model

In previous multimodal classification experiments, the approach of integrating clinical
information and image data to predict lesions showed limited performance improvement relative to
structural complexity and did not demonstrate significant improvement compared to single-
modality-based models. Accordingly, this study attempted to analyze the causes of this performance
stagnation and take a more fundamental approach.

A detailed review of the image data revealed that two or more lesions frequently coexist in a
single PA image, clearly demonstrating the limitation that binary classification or multi-label
classification approaches cannot sufficiently reflect the spatial characteristics and boundary
distinctions between these lesions. In particular, since the location, shape, and range of lesions differ
from each other, the necessity arose for the model to explicitly learn where lesions exist within the
image, beyond simply determining "whether lesions exist."

Accordingly, this study departed from the existing classification-centered design of single
diagnostic models using periapical radiographic images and redesigned multimodal fusion by newly
configuring an image-based lesion detection model focused on object detection. For each X-ray
image, experts directly labeled the locations of lesions with bounding boxes, and each lesion such
as dental caries, tooth fracture, and apical lesions was defined with separate class IDs. Subsequently,
training proceeded with a detection structure that could simultaneously perform bounding box
regression and multi-class classification based on the labeled data.

For the deep learning model for lesion detection, the DETR (DEtection TRansformer) structure
was adopted, and experiments were conducted based on an end-to-end learning method
differentiated from existing convolution-based detection models. DETR takes the entire image as
input and uses object queries to directly predict lesion objects. Since accurate detection is possible
without separate anchor settings or NMS (Non-Maximum Suppression) processes, it was deemed
suitable for detecting objects with irregular shapes and sizes, such as lesions.
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3. RESULTS

3.1. Single-modal model Evaluation and Analysis

3.1.1 Clinical Test Data Model

In this study, a total of 776 clinical data samples were preprocessed, and the distributions of
patient demographics such as sex and age were visualized in Figure 10. Additionally, the distribution
of each clinical test result and the categorized chief complaints (C.C.) were also visualized for
further analysis.

Data preprocessing included variable transformation, categorical variable encoding, scaling,
feature selection, and reconstruction, resulting in a high-dimensional dataset. Based on this, various
machine learning techniques were experimentally applied. Initial model development focused on
dental caries, the most prevalent condition in the dataset, and subsequent experiments were extended
to other types of lesions.

The models were developed using the PyCaret AutoML library, which allowed efficient
comparison across multiple well-established classification algorithms, including Logistic
Regression, Decision Tree, SVM, Gradient Boosting, and Random Forest. In the initial stage, 14
models were trained without considering class imbalance, and their performances were summarized
in Table 3 with AUC as the primary evaluation metric.

Considering the impact of class imbalance on model performance, data rebalancing techniques
such as SMOTE were applied, and the models were retrained accordingly. The results presented in
Table 4 demonstrated that the performance of most models improved significantly with Random
Forest showing the best results and ultimately being selected for further analysis. As an ensemble
learning algorithm based on multiple decision trees, Random Forest effectively captures interactions
among high-dimensional clinical variables, offers strong resistance to overfitting, and allows
intuitive interpretation of feature importance-aligning well with the goals of this study.

All experiments were conducted using 5-fold cross-validation, and performance was evaluated
using metrics such as F1-score, ROC AUC, Precision, and Recall.
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Figure 10. Visualization of demographic distribution and clinical test frequencies.

This figure illustrates the distribution of sex, age, and frequencies of seven clinical test results.
Percussion, Mobility, Bite, Air, Cold, and EPT (Electric Pulp Test) used for model training. Each
clinical test is visualized with the number of cases per score level, highlighting class imbalance
across categories
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Table 3. Model training results for dental caries detection without considering class imbalance
in clinical data

Model Accuracy AUC Recall  Prec. F1 Kappa MCC TT(Sec)
Extreme Gradient Boosting ~ 0.7847 0.8066 0.5828 0.6570 0.6115 0.4640 0.4699 1.2220
K Neighbors Classifier 0.7230 0.7579 0.7012 0.5181 0.5946 0.3919 0.4033 0.6280
Decision Tree Classifier 0.7572 0.7151 0.6111 0.5801 0.5924 0.4203 0.4227 0.6740
Random Forest Classifier 0.7847 0.8061 0.5401 0.6620 0.5919 0.4480 0.4542 0.9380
Light Gradient Boosting Machine 0.7765 0.8003 0.5590 0.6461 0.5918 0.4401 0.4474 0.7740

Gradient Boosting Classifier 0.7599 0.7799 0.5691 0.5900 0.5772 0.4102 0.4119 1.2600
Extra Trees Classifier 0.7710 0.7941 0.5399 0.6318 0.5763 0.4217 0.4279 0.8120
Logistic Regression 0.7311 0.7672 0.6346 0.5309 0.5727 0.3801 0.3874 0.7460
Ada Boost Classifier 0.7407 0.7501 0.5970 0.5485 0.5695 0.3850 0.3874 0.8380
Quadratic Discriminant Analysis 0.6844 0.7590 0.7056 0.4808 0.5651 0.3354 0.3559 0.7300
Ridge Classifier 0.7147 0.7485 0.6252 0.5047 0.5560 0.3498 0.3563 0.7520
Linear Discriminant Analysis 0.7119 0.7292 0.6112 0.5005 0.5479 0.3400 0.3456 0.7740
SVM-Linear Kernel 0.7132 0.7395 0.5878 0.5111 0.5413 0.3361 0.3414 0.6800
Naive Bayes 0.4101 0.5640 0.9004 0.3184 0.4700 0.0731 0.1245 0.6300

Table 4. Model training results for dental caries detection considering class imbalance in
clinical data.

Model Accuracy AUC Recall  Prec. F1 Kappa MCC TT(Sec)
Gradient Boosting Classifier 0.8820 0.8781 0.6727 0.6150 0.6344 0.5651 0.5711 1.4740
Random Forest Classifier 0.8807 0.8971 0.6296 0.6137 0.6201 0.5495 0.5505 0.8980
Extreme Gradient Boosting ~ 0.8780 0.8648 0.5933 0.6063 0.5947 0.5236 0.5265 1.1460
Light Gradient Boosting Machine 0.8766 0.8721 0.5933 0.6027 0.5940 0.5218 0.5241 1.3800
Quadratic Discriminant Analysis 0.8326 0.8321 0.7791 0.4823 0.5935 0.4966 0.5203 0.7600
K Neighbors Classifier ~ 0.8354 0.8720 0.7522 0.4805 0.5850 0.4886 0.5089 0.6780
Extra Trees Classifier 0.8683 0.8955 0.5660 0.5757 0.5688 0.4914 0.4926 0.8340
Ada Boost Classifier 0.8504 0.8278 0.6379 0.5211 0.5665 0.4788 0.4868 0.9240
Decision Tree Classifier 0.8505 0.7526 0.6016 0.5184 0.5543 0.4655 0.4690 0.6780
Ridge Classifier 0.8203 0.8644 0.6723 0.4495 0.5379 0.4322 0.4461 0.8020
Linear Discriminant Analysis 0.8230 0.8405 0.6644 0.4526 0.5372 0.4329 0.4460 0.8480

Logistic Regression 0.8244 0.8447 0.6372 0.4596 0.5300 0.4267 0.4377 0.7520
SVM-Linear Kernel 0.8134 0.7986 0.5411 0.4325 0.4713 0.3625 0.3712 0.7140

Naive Bayes 0.5158 0.6813 0.9202 0.2322 0.3707 0.1638 0.2692 0.6440
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Throughout the study, a variety of preprocessing strategies, oversampling methods, loss
functions, and classification algorithms were compared. Among them, Random Forest consistently
demonstrated high accuracy and reliability. SMOTE-based oversampling and stratified cross-
validation notably contributed to improved model stability. These findings also provide
foundational insights that can be applied to the development of more complex deep learning
models in the future.

Following the experiments on single-lesion classification for dental caries, the models were
extended to include tooth fracture and pulpitis. Their respective performance results are illustrated
in Figure 11. Hyperparameter tuning was performed using AUC as the primary criterion, which is
particularly suitable for evaluating classifier performance in imbalanced datasets.

Subsequently, a multi-label Random Forest model was trained to simultaneously classify all three
conditions (dental caries, tooth fracture, and pulpitis). Although this multi-label model showed a
slight decrease in AUC compared to the individual models, it still achieved robust performance with
AUC values above 0.78 for all conditions, as shown in Figure 12. Interestingly, improvements in
pulpitis classification appeared to influence the performance of other conditions as well. Feature
importance plots were analyzed to identify key variables contributing to the prediction of each
condition

Despite the stable performance of traditional machine learning algorithms such as Random Forest,
their inherent structural limitations were also recognized—particularly in capturing complex,
nonlinear relationships within high-dimensional clinical and imaging data. Therefore, this study
aimed to extend the model to a neural network architecture with enhanced representational
capabilities by designing a Multi-Layer Perceptron (MLP).

The MLP-based diagnostic model incorporated pretraining and data augmentation techniques to
maximize performance, with the results summarized in Figure 13. Evaluation was tailored to the
multi-label classification task, with per-class precision, recall, and Fl-scores calculated.
Additionally, threshold tuning of sigmoid outputs beyond the default 0.5 was performed to optimize
the balance between sensitivity and specificity. The model was validated using stratified k-fold
cross-validation, with independent training and evaluation in each fold. To ensure prediction stability
across multiple lesions, standard deviations across folds and class-level performance variances were
also analyzed. The 5-fold validation of the final model is shown in Table 5.

As a result, the MLP-based multi-label classification model demonstrated improved diagnostic
performance compared to Random Forest. Notably, combining the model with focal loss and class
imbalance handling strategies led to consistent performance improvements across all target lesions.
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Figure 11. Performance comparison of Random Forest-based models for single-lesion
diagnosis (dental caries, tooth fracture, and pulpitis).

The ROC curves and confusion matrices show the classification performance of three Random
Forest variants for diagnosing each lesion separately. (a) Extra Trees Classifier for dental caries
diagnosis: AUC of 0.87 for both class 0 and class 1. (b) Gradient Boosting Classifier for tooth
fracture diagnosis: AUC of 0.86 for both classes, with the highest micro-average AUC of 0.95. (c)
XGB Classifier for pulpitis diagnosis: AUC of 0.85 for both classes, with balanced classification
performance.
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Figure 12. ROC curve performance of the Random Forest classifier for each disease in the
unified classification model.

(a) Dental caries classification: AUC = 0.82 , (b) Tooth fracture classification: AUC = 0.80, (c)
Pulpitis classification: AUC = 0.84.
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Figure 13. ROC curve comparison for clinical data-based diagnostic model.

(a) Performance of the model without pre-training. The AUC values for class 0 (dental caries), class
1 (tooth fracture), and class 2 (pulpitis) are 0.71, 0.79, and 0.82, respectively, on the test dataset.(b)
Performance of the model with pre-training and additive Gaussian noise-based data augmentation.
The corresponding AUC values on the training dataset improved to 0.87, 0.76, and 0.82, showing
enhanced stability and generalization
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Table 5. Results of 5-fold cross-validation based on the random forest model.

Fold Accuracy AUC Recall Prec. F1 Kappa MCC
0 0.8630 0.8920 0.4348 0.5882 0.5000 0.4227 0.4292
1 0.8699 0.8579 0.6087 0.5833 0.5957 0.5182 0.5184
2 0.8973 0.9113 0.7391 0.6538 0.6939 0.6324 0.6341
3 0.8836 0.8022 0.5909 0.6190 0.6047 0.5364 0.5366
4 0.8897 0.8688 0.7273 0.6154 0.6667 0.6011 0.6041
Mean 0.8807 0.8664 0.6202 0.6120 0.6122 0.5422 0.5445
Std 0.0126 0.0371 0.1104 0.0253 0.0672 0.0728 0.0716
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3.1.2 Radiological Model

To effectively learn the complex structural characteristics of periapical radiographs, two distinct
pretraining strategies were employed and compared in this study: (1) a Vision Transformer (ViT)-
based Masked Autoencoder (MAE) approach, and (2) a CNN-based U-Net architecture for image
reconstruction.

The MAE framework is a self-supervised learning method in which a portion of the input X-ray
image is randomly masked, and the remaining visible patches are used to reconstruct the full image.
This approach enables the model to learn global visual representations efficiently. In this study, 10%
of the image patches were masked, and the model was trained to minimize pixel-wise Mean Squared
Error (MSE) between the reconstructed and original images. The encoder, pretrained through this
process, was later transferred as a feature extractor for downstream classification and lesion
detection tasks.

For the CNN-based pretraining, a denoising autoencoding scheme using the U-Net architecture
was implemented. The input X-ray images were augmented with Gaussian noise and geometric
transformations (e.g., rotation), followed by masking of specific regions. The model was trained to
reconstruct the original image from the corrupted input, guiding the encoder to focus on meaningful
local structures. The encoder progressively abstracted the image through multiple convolutional and
pooling layers, while skip connections allowed the decoder to recover fine details. After pretraining,
the decoder was removed, and the encoder was fine-tuned as the backbone for the downstream
classification tasks.

Supervised fine-tuning was conducted on each pretrained encoder. Various levels of image
augmentation, such as contrast enhancement, rotation, and elastic deformation, were applied to
improve robustness against image variability and inter-patient anatomical differences. Batch
Normalization was used after each convolutional and linear layer to reduce internal covariate shift,
thereby improving training stability and convergence speed, particularly in deeper architectures.

To enhance training stability and generalization performance, several optimization strategies
were employed. The loss functions included Binary Cross Entropy or Focal Loss, both combined
with L2-based weight decay to prevent overfitting. The AdamW optimizer was adopted as it
decouples weight decay from gradient updates. This improves the effectiveness of L2 regularization
and often results in better generalization across deep learning benchmarks.

The learning rate was adjusted using a combined warm-up and decay schedule. Training started
with a low learning rate, which was linearly increased over the initial steps, and then gradually
decreased based on validation loss or the number of epochs. A systematic hyperparameter search,
including random search, grid search, and Bayesian optimization, was performed to tune key
parameters such as learning rate, batch size, dropout rate, and weight decay. Final configurations
were selected based on model performance metrics, including AUC and macro F1-score.

Through this structured training pipeline, we systematically compared the classification
performance of various backbone architectures across different levels of augmentation. The results
showed that increasing augmentation strength generally improved model performance. However,
overly aggressive transformations sometimes degraded performance, depending on the model’s
depth, complexity, and pretraining method.
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Overall, models that incorporated pretrained encoders outperformed their non-pretrained
counterparts. These models exhibited both superior classification accuracy and faster convergence.
Specifically, the MAE-based transformer encoder proved effective in capturing global anatomical
structures in X-ray images. In contrast, the CNN-based U-Net encoder demonstrated strength in
representing localized structural details, leading to higher F1-scores for specific lesion types such as
dental caries. The result graphs are shown in Figure 14.

These findings underscore the importance of selecting pretraining strategies that are tailored to
the unique characteristics of periapical radiographs. Performance variations observed across
different lesion types suggest that the anatomical and radiographic nature of the pathology may
determine whether global or local visual representations are more effective. This study confirms that
transformer- and CNN-based visual representation learning methods offer complementary
advantages. It also emphasizes the need to align pretraining strategies with the clinical goals of the
diagnostic task.
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Figure 14. ROC curve of the final radiographic image-based AI model for dental caries, tooth
fracture, and pulpitis classification.

This graph represents the final diagnostic performance of the AI model trained using periapical
radiographs, incorporating both data augmentation through lesion labeling and self-supervised
pretraining. AUC values: Dental caries = 0.88, Tooth fracture = 0.77, Pulpitis = 0.83.
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3.2. Multi-modal model Evaluation and Analysis

This study aimed to overcome the representational limitations of single-modality learning and
achieve more precise predictions of patient conditions by designing and analyzing a multimodal
diagnostic model that integrates clinical data and periapical radiographic images. By effectively
fusing two distinct data modalities residing in different feature spaces, the goal was to combine their
complementary information and enhance overall predictive performance.

The first fusion approach involved independently encoding clinical and image data, then merging
the outputs through simple concatenation into a single feature vector. This merged vector was
subsequently passed through a Multi-Layer Perceptron (MLP) for final classification. The clinical
data, comprising both numerical and categorical variables, were standardized and input into an
MLP-based encoder to produce a latent representation. Meanwhile, the radiographic images were
processed using a pretrained CNN or Vision Transformer (ViT) encoder, which generated flattened
feature vectors. These two outputs were concatenated and passed through MLP layers for final
prediction. This method offers simplicity and fast training, assuming that each modality’s
representation is independently robust. For this reason, it was established as the baseline multimodal
structure for performance comparison with more complex fusion models.

The second fusion approach incorporated cross-attention or self-attention mechanisms to capture
more sophisticated interactions between modalities. In this design, clinical and image data were first
encoded separately, then used as queries, keys, and values in a cross-attention operation. For
example, clinical features served as queries while image features acted as keys and values, enabling
the model to learn which visual patterns were most relevant to the clinical context. The inverse
direction was also implemented. Unlike simple linear concatenation, this attention-based approach
dynamically adjusts the information flow between modalities during training, offering enhanced
flexibility. This is particularly useful in medical imaging, where the regions of interest within an
image may vary depending on the patient's clinical context.

These two multimodal fusion strategies were evaluated under identical datasets and training
conditions. While the attention-based model offered greater expressiveness and adaptability, it also
introduced increased model complexity and longer training times. Conversely, the simple
concatenation approach provided structural simplicity and stable convergence, making it more
practical for clinical deployment. The best performance results using this attention-based model can
be seen in Figure 15.

However, neither fusion method showed a clear performance advantage over single-modality
models. This suggests that the clinical and image data may not exhibit strong complementarity, or
that some degree of information redundancy may exist. The detailed results of each experiment are
summarized in Table 6, with Area Under the Curve (AUC) serving as the primary evaluation metric.
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Figure 15. ROC curve performance of the final multimodal model combining clinical
examination and periapical radiographs.

The ROC curve illustrates the diagnostic performance for each class using the fused model. AUC
values: Dental caries = 0.82, Tooth fracture = 0.74, Pulpitis = 0.86. The model demonstrates
improved diagnostic capability through integration of complementary features from both modalities
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Table 6. Comparison of diagnostic performance (AUC) across different modality, pretraining,
and fusion strategies.

Modality Pretrained Fusion égﬁl—e s l?:‘fl(cjt_u re lélﬂglas
Clinical only Yes N/A 0.87 0.76 0.82
X-ray only Yes N/A 0.88 0.77 0.83
Multimodal Yes Attention 0.82 0.74 0.86
Clinical only No N/A 0.71 0.79 0.82
Clinical only Yes N/A 0.82 0.7 0.82
Clinical only No N/A 0.74 0.77 0.85
X-ray only Yes N/A 0.87 0.71 0.83
X-ray only No N/A 0.71 0.72 0.84
X-ray only MAE N/A 0.85 0.77 0.84
X-ray only U-Net N/A 0.88 0.74 0.84
Multimodal Yes Concat 0.71 0.72 0.85
Multimodal Yes Attention 0.8 0.72 0.84
Multimodal No Concat 0.85 0.7 0.86
Multimodal No Attention 0.85 0.73 0.81
Multimodal Mixed Concat 0.83 0.73 0.81
Multimodal Mixed Attention 0.72 0.78 0.84
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Based on these findings, this study sought to address the structural limitations and stagnating
performance of multimodal classification models by transitioning to a fundamentally different
modeling strategy.

Upon a detailed review of the periapical radiographs, it was frequently observed that multiple
types of lesions coexisted within a single image. This complex scenario posed challenges for binary
or multi-label classification models, which are not designed to capture spatial relationships or
distinguish overlapping lesions. The varied location, shape, and extent of lesions highlighted the
need for models that could explicitly learn where lesions are located in an image, not just whether
they exist.

To meet this requirement, the research shifted from a classification-focused approach to a lesion
detection model. Expert annotators manually labeled the location of lesions within each radiograph
using bounding boxes, and each lesion type (e.g., dental caries, tooth fracture, apical lesion) was
assigned a distinct class ID. The detection model was trained to perform both bounding box
regression and multi-class classification simultaneously.

The architecture chosen for this task was DEtection TRansformer (DETR). Unlike conventional
CNN-based detectors, DETR accepts the entire image as input and predicts lesion objects using
object queries, without relying on anchor boxes or non-maximum suppression (NMS). This anchor-
free, end-to-end framework is particularly suitable for detecting lesions that vary greatly in shape
and size and offers a streamlined architecture.

This modeling shift is not only a technical advancement aimed at improving performance, but
also holds significant value from a clinical application perspective. In real-world diagnostics,
clinicians rely on lesion location information within the image. Therefore, detection-based models
provide more intuitive and interpretable outputs than classification-based ones. This study
demonstrates that detection models may form the foundation for future integration of image and
clinical data, representing a paradigm shift from classification-based to spatially aware, detection-
centered multimodal analysis.

Currently, the research team is extending this detection framework by incorporating clinical data,
with the aim of building a multimodal lesion detection model that enhances spatial prediction
performance through the integration of patient-level clinical information. The extension and
experiments of this detection framework can be seen in Figure 16.
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Figure 16. DETR training and performance evaluation of the multimodal detection model.

The graphs illustrate the training and validation loss curves, along with evaluation metrics for the
detection model enhanced with Exponential Moving Average (EMA). Compared to the base model,
the EMA-enhanced model demonstrates improved stability and accuracy across Average Precision
(AP) at 0.50, Average Precision from 0.50 to 0.95, and Average Recall from 0.50 to 0.95 over 30

epochs
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3.3. Detection-based Multimodal Performance Results

To overcome the limitations observed in the previous classification-based multimodal approach,
this study maintained the single diagnostic model using clinical examination while redesigning the
single diagnostic model component using periapical radiographic images from a classification-based
diagnostic model to a detection-based model, followed by fusion analysis.

The detection-based radiographic single diagnostic model showed no significant performance
differences compared to the existing classification-based model when evaluated independently.
However, the multimodal approach fusing with clinical examination results demonstrated
performance improvements across all diagnostic areas compared to previous multimodal results:
dental caries (AUC: 0.82 — 0.88), tooth fracture (AUC: 0.74 — 0.84), and pulpitis (AUC: 0.86 —
0.90). Notably, tooth fracture diagnosis showed the greatest performance improvement (AAUC =
0.10), representing a relatively higher improvement margin compared to other diseases. The AUC
performance graph results of this detection-based multimodal diagnostic model can be seen in
Figure 17.
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Figure 17. Multi-class ROC curve performance of the multimodal detection model for dental
disease diagnosis.

The ROC curve illustrates the diagnostic performance for each class using the fused model. AUC
values: Dental caries = 0.88, Tooth fracture = 0.84, Pulpitis = 0.90. The detection model
demonstrates consistently high diagnostic capabilities across all dental pathologies, with superior
performance compared to classification approaches through enhanced spatial feature integration of
clinical examination and radiographic data.
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4. DISCUSSION

4.1. Summary of Results

In this study, we developed and analyzed the performance of a multimodal artificial intelligence-
based diagnostic model using clinical examination data and periapical radiographic images. The
multimodal Al diagnostic model showed results that exceeded the performance of each single-modal
Al, and we confirmed the tendency that as the performance of each single-modal improved, the
multimodal performance also improved accordingly. This suggests that multimodal approaches can
be usefully applied in dental diagnostic assistant systems.

In the single-modal model analysis, the clinical examination model showed rapid performance
improvement as data processing became more sophisticated, while the periapical radiographic image
model showed relatively limited performance improvement. This is analyzed to be due to the lack
of complementarity between periapical radiographic image information and clinical examination
information, and the increased complexity in the classification process, which limited performance
improvement in multimodal fusion.

To overcome the limitations of the previous classification-based multimodal approach, this study
maintained the clinical examination model while redesigning the radiographic image component
from a classification-based to a detection-based model. The detection-based approach enabled more
accurate spatial mapping between clinical findings and radiographic lesions, significantly improving
diagnostic accuracy especially when structural anatomical information and clinical symptoms
needed to be correlated.

The detection-based radiographic single diagnostic model showed no significant performance
differences compared to the existing classification-based model when evaluated independently.
However, in the multimodal approach fused with clinical examination results, performance
improvements were observed across all diagnostic areas including dental caries, tooth fracture, and
pulpitis compared to previous results. This suggests that the detection-based framework enabled
more effective feature extraction and integration in multimodal fusion.

Particularly noteworthy was the substantial performance improvement in tooth fracture diagnosis.
This is attributed to the stronger correlation between patient symptoms and lesions compared to
other diseases, and the fact that primary disease factors more distinctly overwhelm secondary disease
factors. Tooth fracture requires simultaneous confirmation of both patient clinical symptoms and
structural features in radiographic images for accurate diagnosis, making it a case where modalities
are truly complementary.
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Clinical examination data is primarily used to diagnose pulp vitality, while radiographic images
represent structural features, making them advantageous for dental caries and fracture detection.
These findings confirmed that the types of modalities required differ for specific diagnoses, and that
optimal modalities vary by disease type. This suggests that future diagnostic Al systems should
adopt disease-specific multimodal strategies rather than applying uniform approaches across all
conditions.

4.2. Clinical Examination Single Model
4.2.1 Correlation Between Variables

In this study, a correlation matrix based on Pearson correlation coefficients was computed and
visualized in Figure 18 to systematically evaluate the relationships between variables. Pearson
correlation coefficients numerically represent the strength and direction of linear associations
between continuous variables, and statistical validity was ensured by securing a sufficiently large
sample size of over 700.

The visualization of the correlation matrix in Figure 18 revealed that most variable pairs
exhibited weak correlations, with absolute values of the coefficients falling below 0.3 (Jr| < 0.3),
indicating that multicollinearity among variables was not a significant concern. However, moderate
correlations were observed between several items that likely reflect similar clinical conditions.
Notably, positive correlations were found between 'Mobility' and 'Percussion’, as well as between
'CC1_Pain' and 'CC1_Sensitivity', suggesting that these variables may be capturing overlapping
clinical features such as periodontal ligament responses or pain sensitivity.

To examine these patterns in more detail, a separate correlation analysis was conducted among
clinical symptom variables (Air, Bite, Cold, EPT, Hot, Mobility, Percussion), and the results were
visualized in Figure 19(a). In this focused matrix, the strongest correlation was observed between
'Mobility' and '"Percussion’', both of which are known to reflect periodontal ligament responses.
Additionally, 'Cold' exhibited moderate correlations with these variables, implying a potential
overlap between pulpal and periodontal pain responses, and suggesting a clinically meaningful
transition zone between these types of stimuli.

Figure 19(b) presents the correlation matrix among CC1 annotation variables (CC1_Pain,
CC1 _No Symptoms, CCI_Sensitivity, CC1_Gum Swelling, CC1_Mobility, CC1_Unknown).
Interestingly, a relatively high positive correlation (r = 0.58) was observed between 'CC1_Pain' and
'CC1_No Symptoms', despite their conceptually opposing meanings. This result implies potential
inconsistencies in the questionnaire design or data entry, warranting a review of the annotation
scheme. Furthermore, 'CC1_Pain', 'CC1_Sensitivity', and 'CC1_Gum Swelling' were found to share
moderately high correlations, indicating a likelihood of redundant information. For subsequent
modeling, it is recommended to consider variable consolidation or dimensionality reduction
techniques to mitigate redundancy.
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Additionally, the age variable showed no notable correlation with most other variables,
suggesting that it possesses independent explanatory power. Regarding the gender variable, the
dummy-encoded 'gender f' and 'gender m' displayed perfect negative correlation, and were
therefore merged and treated as a single binary variable ('gender'). Collectively, these findings
suggest that the variables used in the analysis maintain a generally independent structure,
minimizing the risk of interpretive distortion due to overlapping information and thus enhancing the
reliability of the predictive modeling.
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Figure 18. Pearson correlation matrix of clinical examination features.

The figure presents the correlation coefficients among various clinical test variables, chief
complaints (CC1), demographic features (age, gender), and diagnostic tests (e.g., Air, Bite, Cold,
EPT, Hot, Mobility, Percussion). Positive correlations are shown in blue and negative correlations
in red, with stronger relationships appearing closer to =1 on the color scale. Gender and age variables
were one-hot encoded for inclusion in the analysis.
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Figure 19. Subgroup Pearson correlation matrix (|r|) of clinical examination features.

(a) Correlation heatmap of clinical examination tests (b) Correlation heatmap of CC1 annotation
variables, including pain, sensitivity, gum swelling, mobility, and absence of symptoms.
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4.2.2 Feature Processing

The handling of missing values according to the retrospective data collection method was a
factor that significantly affected model performance. We compared and analyzed various
methodologies for handling missing values in categorical variables, including 'creating a separate
category for missing values', 'Tandom substitution', and 'mode substitution'. The method of setting
missing values as an independent category called 'missing' had advantages in terms of preserving
the information of the original data, but there was a possibility that the model might learn
unnecessary patterns. The random substitution method contributed to maintaining the overall data
distribution but showed limitations in terms of result reproducibility.

Missing data recorded as 'no examination' was generally marked as "-" or left blank, and based
on repeated experiments with various substitution methodologies, the mode substitution method was
found to produce the most stable model performance. Therefore, in this study, we consistently
applied the mode substitution method to all categorical variables.

The complexity of missing value handling and methodological constraints demonstrate the
fundamental limitations of retrospective study design. Since data quality is paramount for effective
artificial intelligence model training, future research requires prospective study designs that are well-
designed from the outset to maintain controllable conditions for various factors and ensure reliability.
This approach would minimize missing value occurrence and secure more accurate and consistent
data, thereby enabling further improvement in the performance of artificial intelligence diagnostic
models.

4.2.3 Handling Data Imbalance

To solve the class imbalance problem commonly encountered in medical research, we
systematically applied Stratified K-Fold Cross Validation during the model evaluation and tuning
process. This methodology minimizes learning bias due to class imbalance and enables more reliable
evaluation of the generalizability of tuned parameter combinations by dividing samples so that the
class distribution within each fold is maintained the same as the distribution of the entire dataset.

During the model tuning process, we maintained consistent data split conditions and random
seeds to perform repeated experiments, securing the stability of optimal combination selection and
consistency of performance. Each experiment was repeated several times under fixed random state
conditions, and performance was recorded in terms of mean and standard deviation, followed by
additional verification through seed changes.

As a result of the optimization process, the Random Forest model recorded the highest AUC
figures compared to other algorithms for three major lesions, showing superior classification
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performance. This is interpreted as the ensemble structure of Random Forest effectively capturing
complex interactions between various features, and the optimized hyperparameter combination
through the tuning process producing synergistic effects. The tuning strategy and evaluation
methodology established in this study are expected to be effectively applied to similar medical data
analyses or complex multiclass classification problems in the future.

4.3. Radiographic Single Model
4.3.1 Introduction to Existing Papers

Previous research on lesion detection and diagnosis in periapical radiographic images has already
been extensively accumulated. Since research on dental caries is overwhelmingly prevalent, we will
compare the diagnostic performance with previous studies in this area.

Artificial intelligence technology is showing particularly prominent achievements in the field of
dental caries detection. CNN-based models have shown high performance in detecting dental caries
in periapical radiographic images, and models using GoogLeNet Inception v3 have presented the
possibility of effectively assisting clinical diagnosis in molars (AUC 0.89) and premolars (AUC 0.92)
(Lee et al., 2018). The utilization of artificial intelligence is also expanding in the areas of dental
caries and periodontal disease detection. Research applying explainable Al techniques such as Grad-
CAM to visually clearly present dental caries areas (Oztekin et al., 2023) and the CariesNet model
that segments and detects multistage dental caries with high accuracy (Zhu et al., 2022) have been
developed.

Additionally, research using YOLO-based CNN models has developed technology to detect
interproximal dental caries in digital bitewing images, recording performance similar to expert
readings (Bayraktar & Ayan, 2022). A systematic review of deep learning research for dental caries
detection found that CNN-based models achieved up to 86% accuracy and 76% sensitivity (Szabo
et al., 2024) and research using YOLOv7-based object detection technology showed that the
EfficientNet-BO0 classification model achieved improved performance in dental caries identification
with AUC 98.31% (Chen et al., 2023).

In this study, the periapical radiographic single diagnostic model for detecting dental caries
achieved a performance of AUC 0.88, and the multimodal approach also reached the same
performance of AUC 0.88. This represents a competitive level compared to previous studies, but
shows relatively lower performance compared to the results of Chen et al. (2023).

This performance difference can be attributed to several factors. Unlike previous studies, this
research had limitations inherent to multi-diagnostic models that are not specialized for single
diseases, and most importantly, image quality issues and non-uniformity of radiographic conditions
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in periapical radiographic images are considered to have acted as major constraining factors.
Additionally, inconsistency in image quality due to retrospective data collection and potential
labeling accuracy issues may have also affected performance.

4.3.2 The Problem of Processing as Diseases

The biggest challenge faced during the development of models using radiographic images was
mapping lesions appearing in the images to accurate diseases. Dental diseases inherently show
complex patterns, and multiple lesions frequently coexist within a single image. Due to this
complexity, there are many situations where it is difficult to derive an accurate diagnosis based solely
on radiographic images.

Moreover, even the same lesion can be assigned different diagnoses depending on the patient's
subjective symptoms, the progression of the lesion, and the professional judgment of the clinician.
This inherent complexity of the diagnostic process led to difficulties in clear label assignment during
artificial intelligence learning, affecting the learning accuracy of the model.

In this study, to solve this problem, we initially attempted an approach of classifying the entire
image into a specific disease category but faced fundamental limitations due to the complexity
factors mentioned earlier. Therefore, we changed the research direction and redesigned the approach
methodology to an object recognition (detection) method that detects individual lesions themselves,
enabling more precise lesion recognition and model development including location information.

4.3.3 Labeling

The labeling process acted as a key element directly affecting model performance. In the labeling
process of this study, it was observed that as artificial intelligence models became more sophisticated,
even micro lesions that are difficult for humans to visually identify were recognized. Among these,
cases that were impossible to read with the naked eye of human experts were classified as 'no label'
using a conservative approach (Gliga et al., 2023).

The reason for choosing bounding box labeling was that the focus was on discovering lesions
with diagnostic value rather than precise segmentation of lesions within periapical images. This
approach enabled labeling with relatively relaxed criteria.

To increase the reliability of labeling, all labels underwent a cross-check process by two
specialists, and in cases where interpretations did not match, they were classified as 'no label’
according to the conservative principle to maintain the strictness of judgment.
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To analyze the size distribution of actual labeled lesions, the width and height of each lesion's
bounding box were extracted and visualized as a histogram. The analysis revealed that most lesions
were distributed in the range of 200-300 pixels, with some lesions corresponding to an even wider
range. Additionally, the aspect ratio of lesions (width versus height) was also deeply analyzed in the
form of a cumulative distribution.

This statistical analysis provided important criteria for practical modeling parameter decisions
such as optimizing anchor box sizes and setting augmentation ranges in designing detection models.
Furthermore, by systematically understanding the statistical characteristics of the size and shape of
lesions, we established a model learning foundation that could encompass various clinical conditions,
which ultimately made a crucial contribution to improving the model's interpretability and
generalization performance.

4.4. Technical Issues

During this research process, we faced various technical challenges and gained several valuable
insights in the process of solving them.

The Random Forest model showed the best performance in terms of consistency and accuracy.
In particular, we confirmed not only the improvement in classification accuracy for a single lesion
type of dental caries but also the possibility of extension to other lesions such as tooth fracture and
pulpitis. These results suggest that the ensemble structure of Random Forest can effectively capture
complex patterns and characteristics of clinical data.

MLP (Multi-Layer Perceptron) based models, especially when applied with Focal Loss, showed
balanced performance improvement across all classes and effective response to multiple lesion
predictions. This empirically proves the effectiveness of Focal Loss in medical data analysis where
class imbalance is prominent.

In the Autoencoder-based approach, we adopted a strategy of learning latent representations
through unsupervised learning and transferring them as feature extractors to be used as classification
models. By combining Autoencoder-based pre-training and transfer learning, we aimed to improve
performance, and this approach was particularly effective in situations with limited labels.

The generalization performance of the radiographic model showed significant differences
depending on the intensity of augmentation, backbone structure, and whether pre-training was
applied. Interestingly, excessive augmentation was observed to lead to performance degradation, a
paradoxical phenomenon. This result emphasizes the importance of setting appropriate intensity and
range when establishing a data augmentation strategy.
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In multimodal model experiments, two fusion models (concatenation-based and attention-based)
showed similar or slightly improved performance compared to single modality models under the
same dataset and experimental conditions. Particularly noteworthy is that the structurally complex
Attention-based model, contrary to expectations, did not show significant performance improvement.
This can be interpreted as the complementarity between clinical information and image data being
lower than expected.

Additionally, we confirmed that in complex situations where multiple lesions simultaneously
exist within an X-ray image, there is a fundamental limitation with just single or multi-label
classification methods. To overcome this limitation, we shifted the paradigm to an object detection-
based approach, through which the model not only showed high detection performance in the
validation dataset but also impressively identified lesions that were missed in the initial labeling
process.

4.5. Multi-modal Model

4.5.1 Comparison with Existing Research

While multimodal approaches in the field of dentistry are still in their early stages, some previous
studies have suggested their potential. In particular, research focusing on tooth identification is
advancing rapidly, with automatic tooth numbering technologies powered by deep learning showing
substantial progression. Previous studies have also reported that when accurate tooth position
information is provided in periapical radiographic images, the performance of Al models
significantly improves. This study also confirmed a trend consistent with this, and it is anticipated
that the development of more precise diagnostic models will be possible through the combination of
tooth number automatic recognition technology and lesion detection technology in the future.

In a previous study on a multimodal deep learning model for dental caries prediction (MMDCP),
a hybrid model based on CNN and artificial neural networks (ANN) was constructed by integrating
radiographic images and clinical data, achieving high accuracy (accuracy 90%, F1-score 89%)
compared to single-modal models (Ngnamsie Njimbouom et al., 2022). Additionally, in a study on
multimodal deep learning models that automatically combine periapical radiographic images, a
ResNet-based model utilizing 4,707 radiographic images and time information recorded superior
accuracy compared to single-modal approaches (Pfander et al., 2023).

However, there are several important obstacles to multimodal performance improvement. First,
in this study, the matching process of clinical examination and periapical radiographic image data
was based on the specific tooth's notation number. However, in periapical radiographs, lesions are
frequently distributed across multiple teeth rather than being confined to a single tooth. Therefore,
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if tooth identification is not accurate, confusion can arise in model learning. To solve this problem,
we systematically performed lesion and tooth labeling, resulting in significantly improved model
performance, suggesting that accurate identification of tooth numbers has a significant impact on
model accuracy.

Second, during the AI model training process, we encountered challenges with the inconsistent
classification of diagnosis labels, disease terminology, and treatment outcomes, further complicating
class differentiation. Dental diagnoses inherently involve multiple concurrent conditions rather than
singular causes in the majority of cases. For instance, patients frequently present with simultaneous
dental caries and tooth fractures, or concurrent tooth fractures and pulpitis. To accurately model
these complex clinical scenarios, we developed an approach that precisely differentiates between
primary and secondary conditions while systematically weighting the contribution of each diagnosis
to the overall assessment.

4.5.2 Limits of Classification-based Multimodal Fusion

In this study, we designed our experiments based on the hypothesis that a multimodal diagnostic
model utilizing both clinical examination information and periapical radiographic images would
demonstrate superior performance compared to models based on single modalities alone. However,
as can be observed in Table 6, the actual experimental results showed patterns that differed somewhat
from these initial expectations.

First, among the single-modal models using clinical data, the pretrained model recorded high
performance with an AUC of 0.87 for dental caries, which was either higher than or comparable to
most results from multimodal models. Similarly, X-ray image single-modal models also showed
performance reaching an AUC of 0.88 when applying U-Net or MAE structures, suggesting that
sufficient diagnostic accuracy could be achieved using independent modalities alone.

In contrast, multimodal models utilizing both clinical information and radiographic images
showed improved performance under certain conditions but did not consistently demonstrate
significant performance improvements compared to single-modal approaches. For example, the
attention-based multimodal model recorded an AUC of 0.82 for dental caries, which was actually
lower than the results of the single-modal pretrained model. Additionally, there were substantial
performance variations depending on the fusion method, and whether pretraining was applied also
served as an important factor influencing the results.

These findings suggest that multimodal structures do not always yield superior results compared
to single-modal models. One major cause is the lack of representational alignment between the two
modalities. In this study, clinical information and image data were matched based on specific tooth
numbers; however, due to the nature of periapical radiographic images where lesions often span
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multiple teeth, there were limitations in securing accurate tooth-by-tooth matching. For example,
even when clinical symptoms existed for tooth #16, radiographic images showed lesions spanning
the #15-17 tooth region, making it difficult to establish accurate correspondence relationships.

Furthermore, classification-based multimodal structures had structural limitations in that they
only considered global features and failed to effectively utilize local lesion information. The
classification approach resulted in the loss of spatial information and precise lesion location data
during the process of classifying the entire image into a single category, making precise mapping
between clinical findings and radiographic lesions difficult. Additionally, the information obtained
from clinical examinations and radiographic images showed redundancy or low correlation for
certain diseases, limiting the benefits of multimodal fusion..

4.5.3 Breakthrough with a Detection-based Approach

To overcome the limitations of the classification-based approach, this study introduced a
paradigm shift by adopting an object detection-based model. This was a strategic approach to
address the problems that became more pronounced limitations in complex clinical situations where
multiple lesions exist simultaneously. The detection-based approach could fundamentally resolve
spatial information loss issues by simultaneously identifying the location and type of individual
lesions instead of classifying the entire image into a single category.

To overcome the aforementioned obstacles to performance improvement and enhance the
practical utility of multimodal diagnosis, this study transitioned the artificial intelligence learning
goal to the form of object detection. Initial model learning was conducted based on an X-ray image
dataset manually labeled by experts, and annotations including the location and class information of
each lesion were configured in COCO format. The trained DETR (DEtection TRansformer) model
not only showed excellent detection performance in the validation dataset but also demonstrated
notable results by accurately predicting lesions that were missed in the initial labeling process in
some images. This was an important discovery suggesting the model's potential to complement the
limitations of existing labeling.

Based on these results, we designed a cyclical validation system where experts review the
prediction results of the DETR model. Specifically, experts conducted additional reviews of high
confidence score detection results among the bounding boxes detected by the model, and in this
process, numerous lesions overlooked in the initial labeling were identified. Based on this, we
introduced an iterative improvement strategy of complementing and modifying existing labels and
retraining (fine-tuning) the model with datasets including these improved labels.

The object detection approach significantly improved spatial mapping between clinical findings
and radiographic lesions by providing precise location information of lesions. Direct correlation
analysis between 'lesions at specific locations' and 'clinical symptoms in corresponding areas'

- 64 -



became possible, which was impossible with previous classification-based models, greatly
enhancing the effectiveness of multimodal fusion. As the matching between lesion areas defined by
bounding boxes and tooth number-based clinical information became much more precise,
complementarity between the two modalities could be practically implemented.

Particularly noteworthy is that the detection-based approach substantially resolved the tooth
number matching problem. By enabling precise localization of lesions through bounding boxes,
matching errors such as 'l16th tooth symptoms vs. lesions in 15-17th tooth region' that were
problematic previously could be significantly reduced. By implementing an algorithm that
automatically identifies corresponding teeth based on the center coordinates and range of detected
lesions, the alignment accuracy between clinical data and image data was markedly improved.

The performance improvement in tooth fracture diagnosis was particularly prominent in the
detection-based approach, as fractures involve clear structural changes compared to other diseases,
making location information crucial for diagnosis. The direct correlation between fracture sites
specified by bounding boxes and clinical symptoms such as pain or sensitivity in corresponding
areas significantly contributed to model performance improvement. Additionally, in the case of
fractures, the concordance between patients' subjective symptoms and objective lesion locations was
high, allowing the two information sources to truly complement each other in multimodal fusion.

These results demonstrate that it is possible to analyze the contribution of radiographic and
clinical information for each disease and design multimodal structures optimized for each lesion
type. The spatial information obtained through the detection-based approach can serve as the
foundation for developing more sophisticated multimodal fusion strategies in the future, which is
expected to further enhance the practicality and accuracy of dental diagnostic Al systems.

4.5.4. Clinical Implications, Study Contributions and Future Directions

This study presents several important contributions that significantly expand the applicability of
artificial intelligence technology in the field of dental diagnosis.

From a methodological perspective, we empirically demonstrated the effectiveness of self-
supervised learning and transfer learning, showing that high-performance diagnostic models can be
developed even in environments with limited labeled data. In particular, the approach combining
Autoencoder-based pre-training with transfer learning provided an effective solution in medical data
environments where labels are limited, suggesting the potential for expansion to other medical
imaging diagnostic fields.

From a clinical standpoint, the most noteworthy finding is that substantial diagnostic accuracy
can be achieved using clinical examination data alone. This presents the possibility of being utilized
as an effective diagnostic assistance tool even in environments where radiographic imaging is
difficult or in emergency situations. Additionally, the discovery that optimal modality combinations
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differ by disease type can serve as the foundation for developing personalized diagnostic strategies
in the future.

The paradigm shift to a detection-based approach significantly improved diagnostic accuracy in
complex clinical situations and enabled the true effectiveness of multimodal fusion, particularly for
diseases where location information is critical, such as tooth fractures. This approach established a
solid foundation for developing accurate and efficient diagnostic tools and enhanced the potential
for practical application in clinical settings.

However, the retrospective design of this study still poses limitations, and future research needs
to ensure data quality and consistency through well-designed prospective studies from the outset.
This would minimize the occurrence of missing values and enable the development of more reliable
diagnostic models.

Future research directions should include the development of more sophisticated fusion
architectures such as cross-modal transformers or modality alignment techniques, advancement of
tooth identification-based alignment algorithms, and the design of multimodal architectures
optimized for each disease type. In particular, the development of lightweight models capable of
real-time diagnosis and the design of user interfaces that can be seamlessly integrated into clinical
workflows are important challenges.

Ultimately, this study has established a technical foundation that can further enhance the
practicality and accuracy of dental diagnostic Al systems, and it is expected to contribute to
complementing the diagnostic capabilities of dental professionals and improving patient treatment
outcomes.
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S. CONCLUSION

The utilization of artificial intelligence (Al) is rapidly expanding across all industrial sectors,
including healthcare, and the field of dentistry is no exception to this transformative trend. Al
technology particularly excels in processing vast amounts of data and learning patterns, raising
expectations for its supportive role in diagnostic processes. This is emerging as a key factor that can
enhance the efficiency and accuracy of dental practice and is considered one of the important
technologies shaping the future direction of dentistry. However, while Al technology is advancing
at a remarkable pace, its application and adaptation in dentistry are relatively slow, necessitating
strategic implementation tailored to the dental context rather than simply following technological
trends.

Diagnosis and treatment form the core of clinical decision-making in dentistry, with 'diagnosis'
being a representative area where Al technology can make substantial contributions. In particular,
Al-based diagnostic assistance systems that integrate various patient data to enable more precise
diagnoses are expected to become a fundamental component of digital dentistry in the future.
However, to build Al systems applicable in clinical settings, using single-modal data alone is
insufficient to adequately reflect complex diagnostic situations. Consequently, there is growing
interest in multimodal approaches that comprehensively utilize different types of data such as images,
clinical records, and patient interview information.

Developing multimodal Al systems presents various technical and practical challenges. Since
different types of data must be learned in parallel to derive the same diagnostic results, the learning
conditions are much more demanding than single-modal models, and data composition becomes
more complex. In this study, to address these challenges, we first developed individual AT models
based on different single-modal data and then implemented a multimodal diagnostic assistance
system by effectively combining them. As a result, multimodal models achieved performance
improvements across all diseases through detection-based approaches, but did not show consistent
performance improvements compared to single-modal models in classification-based approaches.
While the true effectiveness of multimodal fusion was confirmed particularly in tooth fracture
diagnosis, the complementarity between modalities was limited in dental caries and pulpitis.
Through these results, we confirmed the necessity of disease-specific optimal modality strategies
while specifically identifying key challenges of multimodal approaches, including data alignment
issues and limitations of fusion architectures.

Several important prerequisites must be met for successful clinical utilization of multimodal Al
systems. First, to overcome the limitations of retrospective data collection, it is essential to construct
high-quality multimodal datasets through systematic and purpose-oriented prospective research
designs. Second, optimization of each single-modal Al must be prioritized, as this directly affects
the overall performance of the final fusion model. Third, as confirmed in the paradigm shift from
classification-based to detection-based approaches, appropriate Al architecture selection matching
disease characteristics is crucial. Fourth, improvement in the accuracy of tooth number-based data
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matching and development of precise modality alignment techniques utilizing spatial information
are necessary.

This study has simultaneously illuminated both the potential and realistic limitations of
multimodal Al approaches in the field of dental diagnosis. We demonstrated that effective
multimodal fusion is possible even in complex clinical situations through the introduction of
detection-based models, achieving substantial performance improvements particularly in diseases
where location information is critical. However, we also confirmed that the complementarity
between modalities varies by disease type, necessitating customized strategies rather than uniform
approaches. Based on these research findings, continuous research should be conducted on
establishing prospective data collection frameworks, developing advanced modality alignment
algorithms, and designing disease-optimized multimodal architectures. Through these efforts, we
ultimately expect to complete practical Al-based dental diagnostic assistance systems that can
substantially complement the diagnostic capabilities of dental professionals and improve patient
treatment outcomes.
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