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ABSTRACT 

 

Implementing Microfluidic Flow Device Model in Utilizing Dural 

Substitutes as Pulp Capping Materials for Vital Pulp Therapy 

 

 

Vital pulp therapy (VPT) has gained prominence with the increasing trends towards 

conservative dental treatment with specific indications for preserving tooth vitality by 

selectively removing the inflamed tissue instead of the entire dental pulp. Although VPT 

has shown high success rates in long-term follow-up, adverse effects have been reported 

due to the calcification of tooth canals by mineral trioxide aggregates (MTA), which are 

commonly used in VPT. Canal calcification poses challenges for accessing instruments 

during retreatment procedures. To address this issue, the present study investigates the 

potential of dural substitutes as alternative pulp capping materials with mechanical and 

biological properties favorable for maintaining pulp health while reducing canal 

calcification risk.  

Specifically, the study assessed the mechanical characteristics of two dural substitutes, 

Biodesign (BD) and Neuro–patch (NP), designed to alleviate intra–pulpal pressure 

associated with inflammation. The biological responses of human dental pulp stem cells 

(hDPSC), which are essential for pulp regeneration and repair, were evaluated in vitro. A 

microfluidic flow device was developed to simulate the dynamic blood flow environment 

of the dental pulp, with computational fluid dynamics (CFD) simulations confirming that 

the device accurately reproduced physiological flow velocities.  

In addition, the barrier properties of the dural substitutes were tested against 2–

hydroxypropyl methacrylate (HEMA), a cytotoxic monomer released from bonding agents 
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and restorative materials. Both BD and NP demonstrated effective resistance to HEMA 

penetration, suggesting their potential to protect pulp tissue from chemical irritation. The 

biological responses observed in the microfluidic device closely paralleled those found in 

live pulp tissues, highlighting the utility of this platform as a physiologically relevant in 

vitro model for future VPT material testing.  

These findings support the use of dural substitutes as promising alternatives to MTA in 

vital pulp therapy, offering both biological compatibility and protection from external 

irritants, while also presenting a novel microfluidic approach for in vitro pulp tissue 

modeling. 

 

 

 

 

 

 

 

 

Key words: Dural substitute, Human dental pulp stem cell, Microfluidic flow device, Vital pulp 

therapy 
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I. INTRODUCTION 

Vital pulp therapy (VPT) is considered an alternative to conventional endodontic 

treatment in specific cases, with the goal of removing inflamed pulpal tissue while 

preserving pulp vitality (Cohenca et al., 2013) (Dumbryte et al., 2021). According to a 

cohort study, the success rate of VPT was reported to be 91.6 % over a 10 years follow-up 

period (Asgary et al., 2024). The American Academy of Pediatric Dentistry encourages 

dentists to use VPT for immature permanent teeth. Mineral trioxide aggregate (MTA), 

composed of calcium silicate and calcium aluminate, is the most common pulp capping 

material used during VPT (Camilleri, 2008). However, MTA sometimes aggressively 

upregulates genes related to hard tissue formation, thereby potentially leading to intra-canal 

calcification (Boontankun et al., 2023). Intra-canal calcification poses a risk as it can 

obstruct access for instrument during  endodontic treatment, with estimated prevalence 

ranging from 35 % to 91 % (Chen et al., 2012, Chueh et al., 2009).  

The dental pulp and brain share common feature: both are soft tissue enclosed within 

hard tissue, resulting in low compliance conditions. In the brain, this environment can be 

fatal in cases of edema due to high intracranial pressure causing ischemia (Patel et al., 2023). 

To alleviate intracranial pressure in inflamed brain conditions, cranial bone resection is 

performed, following by the application of dural substitute to cover the brain, allowing the 

pressure to return to a normal state (Vakis et al., 2006). Similarly, in the case of dental pulp 

inflammation, cytokines such as substance P and prostaglandin E2 are secreted, initially 

increasing blood flow. However, due to the low compliance conditions, blood flow 

subsequently decreases, leading the necrosis (Kim and Dorscher 1989), During VPT, the 

inflamed dental pulp experience high intra-pulpal pressure. Applying a dural substitute in 

VPT could potentially relieve this pressure and promote healing.  

In a previous in vivo study, researchers applied bioresorbable membranes within dental 

pulp, and after six weeks, these membranes maintained the vitality of the dental pulp while 

increasing the blood supply (Marsan et al., 2003). Histologically, a dentin-like wall was 
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observed beneath the membrane. The process of odontoblast like cells reaching the 

membrane and internalizing these structure was noted. Additionally, degradation of the 

bioresorbable was observed (Lee et al., 2012). These fibrous membrane mimic the structure 

of extracellular matrix, and facilitate cell attachment and migration (Sowmya et al., 2010). 

Fibrous membranes, dural substitutes, are frequently used to cover soft tissues in cranial 

surgeries, thereby reducing the risk of infection and promoting tissue recovery (Berjano et 

al., 1999). Commonly used dural substitutes such as Biodesign (BD) and Neuro-patch (NP), 

which are recognized for their biocompatibility (Elhakim et al., 2023), and can be applied 

in both cranial surgeries and VPT. Dural substitutes have the potential to replace 

conventional VPT materials such as MTA and mitigate the risk of intra-canal calcification 

(Marsan et al., 2003).  

Human dental pulp stem cells (hDPSC) and endothelial cells are integral components of 

dental pulp. The dental pulp tissue is highly vascularized and contains dental pulp stem 

cells that can differentiate into various cell types in response to specific stimuli (Li et al., 

2020). While many previous in vivo studies have been conducted without considering the 

fluid flow conditions, recent studies have shifted their focus towards microfluidic organ-

on-a-chip systems. Which offer more physiologically relevant properties and overcome the 

limitations of traditional  in vitro studies (Huang et al., 2023). Cell culture under flow 

conditions in vitro replicates mechanical stimulation, known as shear stress, and elicits a 

physiological response that closely mimics in vivo behavior (Koutsiaris et al., 2007). 

Additionally, the microfluidic flow device model aids in observing real-time cellular 

reactions to external stimuli, thereby facilitating an understanding of characteristics of 

these stimuli and the application of biomaterials (Franca et al., 2020). In this study, a 

microfluidic flow device was developed to mimic dental pulp chambers and serves as an 

evaluation tool for investigating the effects of VPT materials on hDPSC. Figure 1 illustrates 

the conversion of a conventionally treated tooth for VPT into the microfluidic flow device 

model, including the application of dural substitutes as pulp capping materials.  

The objective of this research was to explore the possibility of using dural substitute as 
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a pulp cover materials in VPT. Additionally, two null hypotheses were tested. The fist null 

hypothesis suggested that it would not be possible to apply shear stress to cells in the 

microfluidic flow device. The second null hypothesis was that the penetration resistance to 

2-hydroxypropyl methacrylate (HEMA) would not be lower in dural substitutes compared 

to MTA.  

 

Figure 1. Schematic illustration of the microfluidic flow device system with various pulp 

capping materials  

  



４ 

 

II. MATERIALS AND METHODS 

Three independent experiments were replicated and using at least three replicates in each 

experiment, and data from those showing similar tendencies were included in the results 

section. The experimental materials and their detailed composition have been summarized 

in Table 1. 

Table 1. Information of used materials. 

Materials Abbreviation Manufacturer Composition 

ProRoot MTA MTA 
Dentsply Sirona, 

Tulsa, OK, USA 

Bismuth oxide, tricalcium 

silicate, dicalcium silicate, 

calcium dealuminate, and 

calcium sulfate dehydrate 

Biodesign Dural Graft BD 
Cook Biotech, West 

Lafayette, IN, USA 

Collagen membrane sheet 

from decellularized small 

intestinal submucosa 

Neuro-Patch NP 
B.Braun, Melsungen, 

Germany 

Synthetic membrane sheet 

made of polyester 

urethane 

Histoacryl HA 
B.Braun, Melsungen, 

Germany 
N-butyl-2-cyanoacrylate 

 

1. Part I. Preparation and characterization of microfluidic flow device  

1.1 Fabrication of microfluidic flow device 

The negative mold for the microfluidic flow device was designed using the Tinkercad 

software (Autodesk INC, San Rafael, CA, USA) and printed using a 3D printer (Nextdent 

5100; 3D Systems, Rock Hill, SC, USA) with a resin slurry (Nextdent Ortho Rigid; 3D 
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System). The dimensions of the printed mold are presented in Figure 2(a). To remove any 

remaining monomer from the mold it was sonicated twice in isopropyl alcohol (Sigma-

Aldrich, St Louis, MO, USA) for 15 min each time, and then post-cured for 1 h using a 

post-curing box (LD-3DPrint BOX, 3D Systems). Following this, the mold was heat treated 

at 100 °C for 2 h in electrical furnace (Venzac et al., 20). Polydimethylsiloxane (PDMS) 

and its catalyst were mixed at a ratio of 10:1 using a speed mixer (Hauschild, Hamm, 

Germany) at 3,500 rpm for 90 s, and 40 mL of the mixture was poured into a mold. 

Subsequently, it was degassed for 2 h at room temperature to remove embedded air bubbles. 

After completing this step, the mold was placed in a 50 °C furnace overnight (Figure 2(b)). 

The cured microfluidic flow device was removed from the mold, and a 10 × 10 mm2 

window was created in the center of the chip to place various materials such as MTA, BD, 

and NP. Following the manufacturer’s instruction, mixed MTA was place in the window 

to a thickness of 1 mm. Additionally, BD and NP, each measuring 1.3 × 1.3 mm2, were 

affixed onto the window using 0.015 g HA, which was evenly applied along the edge of 

the dural substitute in all subsequent experiments (Figure 2(c)). These were then stored in 

a cell incubation for 1 d. The microfluidic flow device and a 76 × 52 mm2  slide glass were 

placed in an oxygen plasma treatment appliance (Zepto-modell2; Diener Plasma GmbH & 

Co., Ebhausen, Germany) for 4 min. After the treatment, the microfluidic flow device was 

attached to a glass slide using slight pressure, finally forming a completely sealed 

microfluidic flow device. Prior to cell culturing, microfluidic flow device was sterilized 

with 70 % ethanol for 10 min and washed thrice with photphate-buffered saline (Welgene, 

Gyeongsan, Gyeongsangbuk-do, Korea). 
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Figure 2. Fabrication protocol of the microfluidic flow device. (a) Dimensions of the 

negative mold of the microfluidic flow device. (b) Images illustrating the 3D printed 

negative mold of the microfluidic flow device and the pouring of polydimethylsiloxane 

(PDMS) into the mold. (c) After curing PDMS, removing the mold from cured PDMS chip 

and assembling slide glass while applying various pulp capping material. The completed 

microfluidic flow device is shown.  

1.2 Analysis fluid flow dynamics within microfluidic flow device 

After designing the microfluidic flow device model using Tinkercad software, it was 

employed for computational fluid dynamics (CFD) analysis (Autodesk INC) to assess the 

effects of fluid flow and shear stress on the bottom surface. Using the microfluidic flow 

device model (Figure 2(c)) as the basis, CFD was employed to simulate the isothermal fluid 

flow within the pulp. The fluid density was set as 1.0 × 106 kg/m3, with an inlet fluid flow 
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velocity of 2.65 cm/s and an outlet pressure of 0 Pa. The flow velocity results across various 

planes were confirmed after 100 simulation cycles.  

 

2. Part II. Cell culture and proliferation in the microfluidic flow device 

2.1 Cell culture 

For hDPSC (Lonza, Basel, Switzerland), alpha modified Eagle’s medium (α-MEM; 

Welgene) supplemented with 10 % fetal bovine serum (FBS; Thermo Fisher Scientific, 

Waltham, MA, USA) and 1 % antibiotic-antimycotic (AA; Thermo Fisher Scientific) was 

used as culture medium. All cells used in this study were from passage 3-5 with seeding 

density of 1.0 × 105 were seeded onto a microfluidic flow device and incubated at 37 °C 

for 1 d. Subsequently, the microfluidic flow device was placed on a hot plate set to 37 °C. 

Polytetrafluoroethylene tubes, along with 4 mm outer diameter polyvinylidene fluoride 

connector, were connected to the inlet and outlet holes of the microfluidic flow device. A 

perfusion pump (ISMATEC, Zurich, Switzerland) was used to flow the culture medium 

from the bottle filled with medium at 37 °C into the system at a flow rate of 0.3 mL/min 

and the effluent medium was collected in another bottle. Medium was removed after 1 d 

and replaced with fresh medium. The process was repeated for 7 or 14 d.  

2.2 Evaluation of cell attachment and growth across different region 

hDPSC were cultured for 7 d under flow conditions described in section 2.1. Cell 

attachment and growth were then observed using microscope at 10 × magnification across 

different regions of the microfluidic flow device. As shown in Figure 3, five different sites 

were chosen to evaluated the effect of fluid flow, shear stress, and pulp capping materials 

on cell behavior. Observation sites for evaluating cell attachment and growth within the 

microfluidic flow device in the presence of pulp capping materials  
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Figure 3. Observation sites for evaluating cell attachment and growth within the 

microfluidic flow device in the presence of pulp capping materials. These figure exhibits 

the dimension of the inner space of the microfluidic flow device.  

 

3. Part III. Physical and chemical evaluation of pulp capping materials 

3.1 Physical characteristics of dural substitutes 

Tensile stress tests were conducted using a universal testing machine (Instron 5942; 

Instron, Norwood, MA, USA) with crosshead speed of 1 mm/min. Specimens of BD and 

NP were cut into dumbbell bell shape and the thickness of each dural substitute was 

measured using a digital caliper (Mitutoyo Kawasaki, Kanagawa, Japan), confirming a 

thickness of 0.15 mm (Figure 4(a) and 4(b)). For the membrane bulging test, each dural 
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substitute was cut into a circular shape with a 5 mm diameter and attached to a substrate 

with a 4 mm diameter space using histoacryl (HA), ensuring a wrinkle-free and tension free 

state. A pressure of 20 g was applied using a 2 mm diameter hemispherical cylinder at the 

center of attached dural substitute, and the stretched ehight of the dural substitute was 

measured using a magnifying camera (SmartDrop Lite; Femtobiomed, Seongnam, 

Gyeonggi-do, Korea) (Figure 4(c)). Each tensile and bulging test was performed in 

triplicates for both dural substitutes. 

 

Figure 4. Schematics diagrams of tensile and bulging test protocol. (a) Dimension of dural 

substitute specimen for tensile stress test. (b) Test method of tensile test by using universal 

testing machine. (c) Protocol for the membrane bulging test and specimen dimension. 

3.2 Wettability test 

A static contact angle analyzer (SmartDrop Lite; Femtobiomed) was used to analyze the 

wettability of different pulp capping materials. A 5 μL droplet of HEMA solution was 

dispensed onto each materials using a needle tip. The resulting contact angle on each 
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sample’s surface was measured and recorded 5 s after the droplet was dispensed. For each 

pulp capping material, the contact angle measurement was repeated six times and this 

process was conducted in triplicate.  

3.3 Evaluation of kinetic permeation of pulp capping materials    

The kinetic permeation of pulp capping materials was measured using the MINUSHEET 

perfusion system (Minucells and Minutissue, Bad Abbach, Germany). First, a 1 mm thicker 

layer of MTA or 0.15 mm thickness BD and NP was placed on the base part of the tissue 

carrier, and the pulp capping material was mounted on the base part. Next, the upper part 

ring was inserted into the base part groove to affix pulp capping materials. The assembled 

tissue carrier was then placed on the MINUSHEET perfusion culture system (Figure 5(a)). 

A volume of 500 μL of Rhodamine B (RhB; Sigma-Aldrich) was dropped on top of the 

pulp capping material and left for 3 h. The perfusion rate was set at 15 μL/min, and the 

perfused solution was collected every 10 min in 96 well plate. RhB has a maximum 

absorbance at 570 nm wavelength. The concentration of RhB was measured using a 

microplate reader (BioTek, Winnooski VT, USA) in triplicate for each capping materials 

(Figure 5(b)).  

3.4 Penetration resistance to HEMA in accordance with materials  

The microfluidic flow device containing hDPSC, which had been incubated for 7 d under 

flow conditions, was placed and secured onto an automated fluorescence microscope 

(EVOS FL; Thermo Fisher Scientific) diluted in medium to detect dead cell. The volume 

of 2.5 μM SYTO-9 (Thermo Fisher Scientific) diluted in medium to detect dead cell. The 

volume of 2.5  μM SYTO-9 used was 4 mL. Subsequently, 3 mL of solution of 20 mM 

HEMA solution was applied to the microfluidic flow device window, allowing HEMA to 

penetrate the MTA, BD, and NP. Bright-field and red-fluorescence images (indicative of 

dead cells) were captured every 10 min at room temperature. Positive control was used to 
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facilitate comparisons among the three experimental groups. For each group, the time at 

which half of the cells died was monitored (Figure 5(c)).   

 

Figure 5. Kinetic permation and HEMA permeation analysis of tested pulp capping 

materials. (a) Experimental setup of kinetic permeation analysis. (b) Schematic figure to 

explain experiment process. (c) Real-time cytotoxicity evaluation by using PI staining.  

3.5 Statistical analysis 

One-way ANOVA followed by Tukey’s test was utilized under the assumption of 

homogeneity of variance, whereas the Kruskal Wallis test followed by Dunn’s test was 

employed under the assumption of non-homogeneity of variance. All statistical analyses 

were performed using SPSS software (version 27.0; IBM, Armonk, NY, USA). The 

significance level was set at p<0.05.  
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III. RESULTS 

1. Part I. Preparation and characterization of microfluidic flow device  

1.1 Fluidic flow analysis under CFD simulation 

The fluid flow velocity within the microfluidic flow device, mimicking the pulp chamber, 

was simulated and analyzed, as shown in Figure 6(a). The fluid flow velocity within the 

microfluidic flow device, mimicking the pulp chamber, was simulated and analyzed, as 

shown in Figure 6(b)-(d), based on different planes relative to the x-, y-, and z-axes. 

Additionally, the shear stress on the bottom surface perpendicular to z-axis, is represented 

in Figure 6(e). The influx fluid moved downward and rotated when it reached the bottom 

surface, similarly, the fluid at the middle plane circulated in both upward and downwards 

direction. While the efflux fluid moved upward at slower rate compared to the influx fluid 

(Figure 6(b) and (c)). Furthermore, the influx fluid initially spread radially on the bottom 

surface of the microfluidic flow device and then flowed in the y-axis direction until it 

originated from the efflux hole. The fluid flow velocity at the bottom side of the 

microfluidic flow device ranged from 0.265 cm/s to 1.37 cm/s. Moreover, the shear stress 

at the bottom of the microfluidic flow device ranged from 0.02 dyne/cm2 to 0.15 dyne/cm2 

in Figure 6(e). Considering that cells attached the bottom surface, this microfluidic device 

can apply shear stress to cells and mimic the physiological conditions of the dental pulp, 

such as fluid flow and shear stress.   
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Figure 6. Analysis of fluid flow velocity in the microfluidic flow device model across 

various surfaces using computational dynamics simulation: (a) Detailed fluid flow 

conditions and x, y, and z axes of the microfluidic flow device. (b) Fluid simulation analysis 

of the central perpendicular plane to x-axis. (c) Fluid simulation analysis of perpendicular 

plane to the y-axis at the influx hole (left), center (middle), and efflux hole (right). (d) Fluid 

simulation analysis of the perpendicular plane to the z-axis at the bottom of the microfluidic 

flow device. (e) Shear stress analysis in the plane perpendicular to the z-axis at the bottom 

of the microfluidic flow device.   
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2. Part II. Cell culture and proliferation in the microfluidic flow device 

2.1 Evaluation cell attachment and growth across different region within 

microfluidic flow device 

Figure 7 depict hDPSC cultured for 7 d under flow conditions within a microfluidic flow 

device. Each cell type was exposed to various pulp capping material and shear stress, with 

hDPSC observed at sites labeled from #1 to #5 sites in Figure  7. Generally, cells in site #1 

and #2 exhibited lower confluence compared to sites #3, #4, and #5. Upon considering the 

morphology of cells across different sites, applied shear stress ranging from 0.02 dyne/cm2 

to 0.15 dyne/cm2 did not significantly alter cell morphology. Consequently, the designed 

microfluidic flow device ensured uniform distribution and attachment of cells across all 

surfaces where cell adhered.  

 

Figure 7. Images of hDPSC and HUVEC cultured for 7 d within a microfluidic flow device 

across different sites. hDPSC cultured in microfluidic flow device with different pulp 
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capping materials for 7 d. Each images measures 3 × 2.25 mm2 at a magnification of ×10. 

(Scale bar: 200 μm). 

3. Part III. Physical and chemical evaluation of pulp capping materials 

3.1 Tensile stress and membrane bulging test 

As shown in Figure 8(a) and 8(b), the elastic modulus of BD was 5.82 ± 1.29 MPa, while 

that of NP was 0.071 ± 0.024 MPa. The ultimate tensile strength of BD was 17.02 ± 2.31 

MPa, and for NP, it was 9.68 ± 1.66 MPa. The strain (%) values differed significantly 

between the two dural substitutes. BD exhibited low stretchability, with a strain value of 

approximately 5 %, whereas NP demonstrated high stretchability, with a strain value of 

around 180 %. Figure 8(a) and 8(b) illustrates that the stretched height (h) of BD was 0.089 

± 0.011 mm, while NP was 1.02 ± 0.08 mm. Consistent with the tensile stress test results, 

NP exhibited greater pliability when subjected to applied pressure.  
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Figure 8. Results of tensile stress and membrane bulging test with specimen dimensions. 

(a) Results of stress-strain curve and bulging test of Biodesign. (b) Results of stress-strain 

curve and bulging test of Neuropatch.  

3.2 Penetration resistance of pulp capping materials over time 

The permeation of RhB solution varied over time depending on the pulp capping materials 

used in Figure 9. Correspondingly, the pulp capping materials demonstrated varying 

degrees of penetration resistance. In the case of MTA, the absorbance graph exhibited a 

steady increase from 30 min to 80 min, reaching a plateau that persisted until 180 min. 

Conversely, the graphs representing BD and NP displayed distinct patterns compared to 

MTA. Specifically, these dural substitutes exhibited a peak before 50 min, followed by a 

consistent decrease until 180 min. Notably, the absorbance of BD began to increase earlier 

than that of NP; at 20 min, the absorbance of BD reached 0.1, whereas NP at 0.04. 

Furthermore, the peak absorbance of BD occurred earlier than that of NP, Consequently, 

MTA demonstrated the highest resistance to penetration among the tested pulp capping 

materials, with NP exhibiting slightly superior resistance compared to BD.  
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Figure 9. Kinetic permation analysis of tested pulp capping materials. The graph illustrates 

the absorbance of the RhB solution that permeated from the tested pulp capping materials, 

collected at 10 min intervals from 10 min to 180 min.   

3.3 Wettability of different materials 

In Table 2, the MTA group exhibited a contact angle of 7.983 ± 3.311 ° with 20 mm 

HEMA, while the BD group showed 65.114 ± 9.150 °, and NP group showed 109.18 ± 

2.365 °. The order of wettability was MTA > BD > NP.  

Table 2. Contact angle analysis. 

Pulp capping materials Contact angle of HEMA (°) 

Mineral trioxide aggregate (MTA) 7.983 ± 3.311 

Biodesign (BD) 65.114 ± 9.150 

Neuropatch (NP) 109.18 ± 2.365 

 

3.4 Evaluating the cytotoxicity of hDPSC upon exposure to HEMA 

In Figure 10(a), the Positive control group, which was directly exposed to HEMA, 

exhibited over 50 % cell death between from 40 to 50 min. Additionally, among 

experimental groups such as MTA, BD, and NP, time to reach 50 % cell death was from 

120 to 140 min, from 50 to 60 min, and from 80 to 90 min, respectively. These results 

indicate that MTA was the most efficient in resisting HEMA penetration among the pulp 

capping materials, followed by NP and BD (Figure 10(b)).  
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Figure 10. Real-time microscopy observation of hDPSC with HEMA. (a) Real-time 

microscopy observation of hDPSC with 20 mM HEMA and SYTO-9. Images were 

captured every 10 min. At 10 × magnification, bright-field images were overlaid with 

SYTO-9 signal (red). Point of exceeding 50 % cell death was assessed thrice for each group. 

(b) Time taken to reach 50 % cell death among groups, marked as dot on the graph. If the 

same time was recorded, these two points were marked horizontally. Different alphabets 

indicate a statistical difference between the groups (p<0.05). (Scale bar: 200 μm)  
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IV. DISCUSSION  

MTA is considered the golden standard material in VPT protocol due to its ability to 

induce tertiary dentin formation (Kang et al., 2017). hDPSC have high differentiation and 

prolifereation into odontogenic cells that participate in tertiary dentin formation (Luke et 

al., 2020). Thus, hDPSC help maintain homeostasis in the dental pulp against external 

stimuli. However, the formation of tertiary dentin is not always beneficial for the dental 

pulp in  terms of healing capability. As tertiary dentin formation progresses, the size of the 

pulp chamber is reduced, which can lead to decreased blood supply (Rowe and Pitt Ford 

1990). This phenomenon implies that when reparative dentin is produced in the dental pulp, 

the collagenous portion increases while the cellular content decreases. Consequently, 

dental pulp that has experienced stimuli or aged pulp may have a diminished protective 

ability against future irritants (Seltzer et al., 1963). Therefore, there is a need for pulp 

capping materials that do not induce excess calcification of the pulp after VPT.   

This study represents an initial exploration of the response of hDPSC to a dural substitute 

utilized as a pulp capping material within a microfluidic flow system. In addition to 

conventional in vitro testing, the microfluidic flow device model emulates the pulp 

chamber in a tooth and recreates a fluid-flow environment similar to that of an in vivo test. 

In a healthy human anterior maxillary tooth, the average blood flow rate of the pulp was 

approximately 0.5 cm/s ranging from 0.1 to 2.0 cm/s, as evaluated by Doppler flowmetry 

(Cho and Park, 2015). This study demonstrated that the fluid flow rate at the bottom of the 

microfluidic flow device ranged from 0.265 to 1.37 cm/s in Figure 6(d). Therefore, we 

speculate that the design and fluid flow operational conditions of the microfluidic flow 

device successfully mimicked the real pulp fluid flow environment in a tooth. Shear stress 

resulting from fluid flow can induce friction against the attached cells, thereby exerting 

mechanical stress that influences cytokine pathways and gene expression (LaMack and 

Friedman, 2007). As shown in Figure 6(e), the microfluidic flow device capable of applying 
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shear stress ranging from 0.02 to 0.15 dyne/cm2. Although the actual shear stress of human 

capillaries has been reported 3 to 90 dyne/cm2 (Koutsiaris et al., 2007), interstitial fluid 

does not produce as much shear stress as blood flow. Mesenchymal stem cells are typically 

exposed to shear stress ranging from 0.01 to 0.1 dyne/cm2 (Kim et al., 2014) (Rutkowski 

and Swartz, 2007); therefore, the shear stress of 0.02 to 0.15 dyne/cm2 generated by the 

microfluidic flow device is similar to in vivo conditions.   

In contrast to other organs, the dental pulp consists of a complex vaascular network that 

produces microcirculation, resulting in non-unidirectional blood flow macroscopically 

(Kim. 1985) (Franca et al., 2019). Additionally, arteriovenous anastomoses are common in 

dental pulp vascular networks, causing turbulent flow in the vessels microscopically (Li et 

al., 2008). Due to the design of the microfluidic flow device shown in Figure 6(a), turbulent 

and circulated flow was produced in the inner space, affecting hDPSC (Figure 6(b)-(d)). 

As I focused on dental pulp physiology, it was necessary to examine the influence of pulp 

capping materials on hDPSC. If turbulent or circulatory flow did not occurred, extracts 

from pulp capping materials such as MTA, BD, and NP would have difficulty reaching the 

cells attached to the bottom surface. In previous research on tooth-on-a-chip (Hu et al., 

2022), the fluid flow played a role in washing out toxic substance and supplying nutrient 

for cells. However, due to the unidirectional flow, only cells attached near the outlet hole 

were influenced by the tested materials, while cells attached from the inlet hole were not 

exposed to the extracts. In contrast, our microfluidic device could spread the influence of 

pulp capping materials not only to cells near the outlet hole but also to those near the inlet 

hole. Furthermore, other dental microfluidic devices, tooth-on-a-chip and pulp-dentin 

complex-on-a-chip (Franca et al., 2020) (Rodrigues et al., 2021), did not provide 

microfluidic conditions to cultured cells. Therefore, the design of our microfluidic device 

is novel and a suitable evaluating the response of hDPSC to pulp capping materials, 

mimicking dental pulp physiology. Additionally, hDPSC was cultured uniformly across 

the entire microfluidic flow device and did not show significantly different morphologies 

regarding spots within the device in Figure 7.  
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Dural substitutes are promising candidates for use as pulp capping materials. In skull 

radiographs of patients treated with cranial surgery and cover by dural substitutes, the 

substitutes allow for decompression by bulging outward (Kim et al., 2014). In normal 

monkey pulp, the pressure is approximately 15 mmHg. However, under inflamed 

conditions, pulp pressure increases to about 50 mmHg (Stenvik et al., 1972). Similarly, in 

human normal pulp, the pressure is 10 mmHg, but in inflamed pulp, it reaches 34.5 mmHg 

(Bender, 2000). Teeth have a low compliance structure, and increasing intra-pulp pressure 

can lead to necrosis (Heyeraas and Berggreen, 1999). If dural substitutes such as BD and 

NP are applied as pulp capping materials, they may alleviate the intra-pulp pressure. In 

Figure 8, both BD and NP were stretchable, but NP exhibited greater stretchability than 

BD due to differences in their composition. The bulging test demonstrated the potential of 

each dural substitute to relieve intra-pulp pressure by bulging outward. The width of the 

pulp in mandibular moral teeth has been reported to be 3.32 ± 0.49 mm (Ilguy et al., 2004); 

therefore, the diameter of the substrate for the bulging test was set at 4 mm. Additionally, 

considering the 20 g mass and dimensions of the hemispherical cylinder, the applied 

pressure exceeded 50 mmHg. Although applying a smaller pressure would have been 

stretched height under such conditions. Therefore, mass was increased and chose a 2 mm 

diameter hemisphere dimension to provide uniform pressure across the entire surface of 

the dural substitutes. However, when applying smaller pressure than this option, stretched 

value cannot be evaluated precisely.  

To analyze the accurate kinetic penetration resistance of various pulp capping materials, 

the MINUSHEET perfusion system was utilized instead of the microfluidic flow device 

(Figure 9). Unlike the microfluidic flow device, which experienced turbulence and 

circulation, the MINUSHEET perfusion system operated with simple fluid input and output, 

eliminating inaccuracies in substance collection. The volume of collected permeated RhB 

solution was verified to match among groups. The findings form Figure 9 is supplemented 

in Figure 10(a). The time required to reach 50 % cell death was ordered as follows: BD, 

NP, and lastly MTA in Figure 10(b). Figure 9 indicates that among pulp capping materials, 
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MTA significantly prevents substance permeation compared to the dural substitute Also, 

the penetration of NP is slower than that of BD. Moreover, the contact angle of MTA with 

20 mM HEMA was approximately 7.893 °, which indicates a potential disadvantage in 

terms of HEMA penetration despite its greater thickness. Conversely, NP which exhibited 

a higher contact angle than BD, is evidence that NP has a higher resistance to 20 mM 

HEMA penetration (Table 2).  

During VPT in a tooth, resin application typically involves the placement of pulp capping 

materials. A bonding agent is applied prior to resin application, wherein HEMA serves as 

a necessary component to enhance the infiltration of the bonding agent into the dentin, 

thereby increasing the bonding strength (Nakabayashi and Takarada, 2002). However, 

HEMA binds to glutathione cysteine and interferes with cellular metabolism, particularly 

radical elimination (Circu and Aw, 2012). Previous research has indicated that the 

concentration of HEMA causing 50 % cell death is 7.5 mm (Lee et al., 2009), and 

composite resin can release HEMA towards the pulp via pulp capping materials (Reichl et 

al., 2012). Therefore, 20 mM HEMA was considered appropriate for evaluating cell 

cytotoxicity. In Figure 10(b), exposure to 20 mM HEMA induced 50 % cell death after 40 

min. The MTA group exhibits a porous structure with surface pore sizes typically under 10 

μm (Lee et al., 2024), and the thickness of the set MTA in the microfluidic flow device was 

1 mm. However, BD and NP are porous membrane with surface pore sizes of 

approximately 10 μm, while their thickness was lower than that of MTA, at about 0.15 mm. 

When fixing the dural substitute in the microfluidic flow device, HA was only applied to 

the edges and a 20 mM HEMA solution was dropped at the center. This difference in 

thickness could affect the time required to reach 50 % cell death among pulp capping 

materials. BD is composed of collagen, whereas NP is composed of polyurethane. This 

difference in the materials can affect the contact angle of 20 mM HEMA, as shown in Table 

2. The 1 mm thickness of MTA used in the experiments was more than five times thicker 

than BD and NP; however, the time required to reach 50 % cell death did not scale 
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proportionally. Moreover, although the difference in thickness between BD and NP was 

minimal, the time required to reach 50 % cell death varied.  

In summary, this study explored the feasibility of using a dural substitute to replace MTA 

as a pulp capping material in VPT by utilizing the microfluidic flow device model. The 

application of the surgical glue HA facilitated easy placement and fixation of the dural 

substitute while preventing HEMA penetration, thus, maintaining biocompatibility of the 

pulp cell. However, this study also encountered several limitations. Firstly, the stress relief 

of dural substitutes in conditions mimicking real inflamed tissue was not observed in the 

microfluidic flow device. Instead, only a membrane bulging out test was performed by 

applying pressure. Secondly, the fluid flow in the microfluidic flow device model did not 

precisely replicate blood flow in the pulpal capillary vessels of a tooth and uniform shear 

stress was not applied across the microfluidic flow device. Additionally, these design 

limitations led to zones with extremely low flow and shear stress. In the future, the 

microfluidic flow device design would need to be revised to overcome these limitations 

and more accurately mimic the physiological conditions of pulpal blood flow and shear 

stress distribution. Thirdly, designed microfluidic flow device does not accurately reflect 

the actual pulp chamber. In our device, the holes for influx and efflux of fluid were placed 

on the same surface as the pulp capping materials. However, in a tooth blood flow 

originated and terminates at the apex, while pulp capping materials are placed in the coronal 

space (opposite surface). Further research addressing these limitations could enhance the 

understating and application of the microfluidic flow device model in dental research.   
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V. CONCLUSION 

1. The fluidic flow velocity and shear stress at the bottom surface of the microfluidic flow 

device ranged from 0.265 to 1. 37 cm/s and 0.02 dyne/cm2 to 0.15 dyne/cm2, respectively. 

Based on these findings, the first null hypothesis was rejected 

2. Among the experimental groups - MTA, BD, and NP- the time to reach 50 % cell death 

ranged from 120 - 140 min, 50 - 60 min, and 80-90 min, respectively. Accordingly, the 

second null hypothesis was also rejected.  

3. The microfluidic flow device model provides a valuable platform for studying the effects 

of fluidic flow on cells, thereby effectively mimicking pulp physiology.   

4. Dural substitutes, specifically BD and NP, exhibited resistance to HEMA exposure.  

5. Dural substitutes demonstrated promising biocompatibility as pulp capping materials 

and may help prevent unintended intracanal calcification.   
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Abstract in Korean 

 

미세유체 흐름 장치를 활용한 경막 대체재의 생활치수치료 

치수복조재로서의 적용 모델 구현 

 

 

생활치수치료는 염증이 발생한 치수를 전체적으로 제거하는 대신 선택적으로 

제거하여 치수의 생명력을 보존하는 보존적 치과 치료의 중요성이 증가함에 

따라 주목받고 있다. 생활치수치료는 장기적인 추적관찰에서 높은 성공률을 

보였지만, 일반적으로 사용되는 치수복조재인 Mineral trioxide aggregate 

(MTA) 에 의해 치근관이 석회화되는 부작용이 보고되었다. 치근관의 석회화는 

재치료 시 기구의 접근을 어렵게 만드는 문제를 초래한다.  

이 문제를 해결하기 위해 본 연구에서는 염증으로 인해 발생하는 치수 내 

압력을 완화하도록 설계된 경막 대체재의 기계적 특성을 평가하고, 치수 내에서 

중요한 역할을 하는 인간 치수 줄기세포 (hDPSC) 의 생물학적 반응을 조사했다. 

또한 경막 대체재가 MTA 를 대체하는 치수복조재로 적용 가능한지 평가했으며, 

이를 위해 치수 내 혈류 환경을 모사한 미세유체 흐름 장치 모델을 활용하였다. 

또한, computational fluid dynamics (CFD) 시뮬레이션을 통해 미세유체 흐름 

장치 내 유체 흐름 속도가 실제 치수 내 혈류 속도와 일치하도록 조정하였다.  

더 나아가, 경막 대체재 (Biodesign 및 Neuro-patch) 는 상부 수복재 및 

접착제로부터 방출되는 2-Hydroxypropyl Methacrylate (HEMA) 의 침투에 대한 

저항성을 나타냈다. 따라서, 경막 대체재는 HEMA 침투 저항성을 바탕으로 

생활치수치료의 유망한 대체 후보이다. 또한 미세유체 흐름 장치 모델은 실제 



３３ 

 

치수 조직에서 관찰되는 반응을 정밀하게 재현하였으며, 이는 향후 in vivo 

테스트 플랫폼으로 활용될 가능성을 시사한다.  
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