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ABSTRACT 

 

Performance evaluation of text- and image-based questions  

by large language model and large multimodal model chatbots  

in oral and maxillofacial radiology 

 

 

 

Purpose: This study aimed to conduct a comprehensive evaluation of general-purpose 

large language model (LLM) and large multimodal model (LMM) chatbots in oral and 

maxillofacial radiology (OMFR) by comparing their performance with dental students, and 

assessing performance changes from LLM to LMM chatbots. 

 

Materials and Methods: A total of 90 text- and image-based examination questions 

were extracted from OMFR curriculum in a Korean dental school and categorized into six 

educational content categories and two question types. Four LLM chatbots (ChatGPT, 

ChatGPT Plus, Bard, Bing Chat) generated a single response per question, while two LMM 

chatbots (ChatGPT-4o, Gemini 2.0 Flash) produced ten responses per item. Accuracy was 

assessed using the first response from each chatbot and compared to student scores. For 

LMM chatbots, response consistency across repeated outputs was analyzed using Fleiss’ 

kappa coefficient. Hallucination was evaluated by two oral and maxillofacial radiologists 

using a five-point Global Quality Scales, with mean and standard deviation, and the effect 

of zero-shot chain-of-thought (ZS-CoT) prompting was examined. 

 

Results: LMM chatbots demonstrated higher accuracy than LLM chatbots on text-

based items and outperformed dental students in certain domains. However, their 

performance remained limited in image-based diagnostic tasks, with frequent variability 

and hallucinations observed in complex image interpretation and short-answer formats. ZS-

CoT prompting did not produce meaningful improvement in accuracy. 
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Conclusions: This is the first study to compare chatbot performance with student 

scores using an OMFR questions that includes both textual and image components, while 

also examining longitudinal performance changes from LLM to LMM chatbots. These 

findings offer timely insight into the current strengths and limitations of general-purpose 

AI chatbots. Future work incorporating more diverse clinical images and case scenarios, 

combined with model customization and advanced prompting strategies, may help enable 

safer and more effective application of AI chatbots in dental education, patient 

communication, and clinical practice. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                

Key words : Oral and maxillofacial radiology, Large language model, Large multimodal model, 

Artificial intelligence, Chatbot, Performance evaluation



1 

 

1. INTRODUCTION 

 

Recent advances in artificial intelligence (AI) have been significantly accelerated by 

the emergence of large language models (LLMs), which are sophisticated systems that use 

mathematical and statistical methods to understand and generate human-like language 

(Shanahan, 2024). LLMs learn linguistic patterns and contextual relationships across a 

wide range of topics by analyzing massive volumes of text data sourced from various 

literature, academic writing, and online content (Thirunavukarasu et al., 2023). Given an 

input prompt, an LLM generates coherent and contextually appropriate responses by 

predicting the most probable next word based on learned probability distributions. These 

models are built upon the transformer architecture, first introduced by Vaswani et al. in 

2017, which replaces traditional recurrence and convolutional layers with a novel attention 

mechanism known as multi-headed self-attention. This design enables the model to capture 

dependencies between tokens (i.e., the smallest units of text used by the model to process 

language) regardless of their relative distance within the input or output sequence (Vaswani 

et al., 2017). These foundational advancements have led to the development of highly 

influential LLMs, such as GPT (Generative Pre-trained Transformer) (Floridi & Chiriatti, 

2020; Radford, Narasimhan, Salimans, & Sutskever, 2018) and BERT (Bidirectional 

Encoder Representations from Transformers) (Devlin, Chang, Lee, & Toutanova, 2019). 

Along with their subsequent iterations, LLMs have demonstrated exceptional performance 

of natural language processing (NLP) tasks, including summarization, translation, question 

answering, and logical reasoning. 

The launch of ChatGPT – a conversational chatbot powered by the GPT-3.5 model – 

introduced to the general public in November 2022 and marked a major paradigm shift in 

the accessibility and application of generative AI: while it took Facebook 10 months to 

reach one million users, ChatGPT achieved this milestone in just five days. In addition, 

ChatGPT’s unexpected success in passing the United States Medical Licensing 
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Examination (USMLE) without any domain-specific training captured global attention in 

January 2023 (Kung et al., 2023). In February 2023, OpenAI released ChatGPT Plus based 

on GPT-4 (Achiam et al., 2023), which provide improved response speed and enhanced 

performance through more extensive and up-to-date training data. In line with this trend, 

Microsoft introduced Bing Chat in February 2023, leveraging Prometheus model, built 

upon GPT-4 and integrating real-time web search capabilities. Google followed in March 

2023 with Bard, initially based on its Pathways Language Model (PaLM) (Chowdhery et 

al., 2023) and the Language Model for Dialogue Applications (LaMDA) architecture 

(Thoppilan et al., 2022). 

Large multimodal models (LMMs) are designed to process and integrate information 

from multiple modalities – including text, images, audio, and video – within a unified 

framework (Huang, Yan, Li, & Peng, 2024). They are the next evolutionary step of LLM, 

which only works with text input and output. This shift reflects an ambition to create AI 

systems that perceive and reason more like humans by simultaneously analyzing linguistic 

and visual cues. LMMs retain transformer-based architecture of their predecessors but are 

further trained on large-scale image-text pairs or multimodal datasets (Li et al., 2024; Qi et 

al., 2020). Notable milestones include Google’s Gemini series (Team et al., 2023), which 

began incorporating LMM capabilities with the release of Gemini 1.0 in December 2023. 

Another key advancement was OpenAI’s GPT-4o (with "o” standing for “omni”) launched 

in May 2024, which introduced a truly unified multimodal model capable of natively 

processing text, images, video, and audio within a single architecture (Islam & Moushi, 

2024). Furthermore, these LMMs adopt mixture-of-experts (MoE) models – an architecture 

that has been widely applied in tasks such as classification, clustering, and regression 

(Nguyen & Chamroukhi, 2018). MoE selectively activates only the most relevant expert 

subnetworks per each query, significantly reducing computational overhead while 

maintaining high-quality responses in complex multimodal tasks (Kim, Lee, & Kim, 2024).  

Response consistency is an important factor in evaluating chatbot performance. LLMs 

and LMMs are inherently probabilistic in nature. Rather than applying fixed rules, these 
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models generate responses by sampling from probability distributions over possible tokens 

(Kim et al., 2024). As a result, identical prompts submitted at different times can yield 

varying outputs, even within the same version of model. In practice, medical researchers 

often submit the same prompts multiple times – typically three to five iterations – to assess 

the consistency of model outputs (Kuşcu, Pamuk, Sütay Süslü, & Hosal, 2023; Wu et al., 

2024). 

Hallucination refers to the generation of information that appears contextually 

appropriate but is factually incorrect. Such inaccuracies may stem from imbalanced or 

incomplete training data, restricted access to up-to-date information, or intrinsic limitations 

in generating responses that are both logically accurate and contextually appropriate 

(Rawte, Sheth, & Das, 2023). Especially, recent study reported that LMMs may generate 

severe ungrounded or inaccurate outputs that are not properly aligned with the provided 

visual context. This issue is often attributed to the imbalance in the amount and quality of 

multimodal training data compared to text data (Sun et al., 2023). The problem becomes 

more prominent in tasks that require precise integration of image and text, such as complex 

image reasoning or medical image interpretation. 

Researchers have explored prompt engineering as a practical method to enhance the 

performance of LLMs and LMMs. This approach guides the model toward producing more 

accurate and reliable responses – for example, by explicitly specifying the model’s assumed 

role (e.g., “Answer as if you were an oral and maxillofacial radiologist with 20 years of 

experience”) or by providing clear and detailed instructions. Several structured prompt 

engineering strategies have also been developed to enhance model reasoning. A common 

classification includes zero-shot, one-shot, and few-shot prompting, depending on how 

many examples are provided in the prompt to guide the model’s understanding of the 

expected context and response structure. Generally, the more examples provided, the better 

the model’s performance (Brown et al., 2020). Another widely studied method is the chain-

of-thought (CoT) prompting strategy, which encourages the model to reason step by step 

through explicit instructions that prompt it to articulate its thought process.  
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Zero-shot chain-of-thought (ZS-CoT), proposed by Kojima et al. in 2022, is a prompt 

engineering technique that improves the reasoning of chatbots. (Kojima, Gu, Reid, Matsuo, 

& Iwasawa, 2022). Simply prepending the phrase “Let’s think step by step” to a prompt 

has been shown to dramatically enhance performance in reasoning tasks. For example, in 

arithmetic problems, model accuracy improved from 17.7% to 78.7% using ZS-CoT 

without the need for any examples. Although ZS-CoT did not outperform few-shot CoT in 

the previous study (Kojima et al., 2022), it offers a compelling balance between 

effectiveness and simplicity. Given that few-shot CoT often requires careful task alignment 

and manually designed examples, ZS-CoT remains a highly efficient and practical strategy 

for improving model reasoning with minimal prompt engineering. However, its application 

in dentistry remains relatively underexplored, highlighting the need for further 

investigation in domain-specific contexts. 

LLMs and LMMs are now widely accessible to the public through general-purpose, 

web-based chatbot platforms. As their educational and clinical applications continue to 

expand, there is growing interest within the dental community regarding their potential 

utility. In dental education, chatbots can function as interactive platforms for clinical 

practice simulation, knowledge reinforcement, and personalized competency assessment. 

By enabling continuous access to educational content and delivering immediate, adaptive 

feedback, they contribute to enhancing students’ learning processes (Fang et al., 2024). 

Clinically, chatbots hold potential to improve patient education by offering tailored health 

information, facilitating remote consultations, and supporting multilingual communication, 

thereby promoting better patient comprehension and engagement in care (Helvacioglu-

Yigit et al., 2025). Oral and maxillofacial radiology (OMFR), which involves both text-

based and image-based tasks, offers opportunities for chatbots to support experts by 

addressing language-related challenges, assisting in the generation and standardization of 

radiology reports, and aiding in the interpretation of dental radiographic images for the 

diagnosis of various head and neck conditions (Kim et al., 2024). To ensure their safe and 

effective integration into these domains, systemic evaluation of their current performance 
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is essential. 

Several recent studies have attempted to evaluate the performance of publicly 

available LLM and/or LMM chatbots using OMFR examination questions (Mine et al., 

2025; Tassoker, 2025; Uehara et al., 2025). However, studies were limited by small datasets 

with fewer than 50 questions, focused exclusively on multiple-choice question formats, or 

primarily utilized text-only input. In the study by Mine et al., image-based questions were 

included but were limited to only six items (Mine et al., 2025). In addition, previous studies 

primarily assessed chatbot accuracy or reliability without conduction expert-based 

hallucination evaluation or applying prompt engineering strategies for performance 

enhancement (Mine et al., 2025; Tassoker, 2025; Uehara et al., 2025). 

This study aimed to conduct a comprehensive evaluation of general-purpose LLM and 

LMM chatbots across four key dimensions – accuracy, response consistency, hallucination, 

and the effect of ZS-CoT – using OMFR questions that incorporate both text and image-

based items. It offers timely insight into both the current capabilities and critical limitations 

of chatbots in OMFR, and contributes a novel methodological perspective for future 

research and practical applications in complex clinical fields. It also provides a longitudinal 

assessment of the evolving capabilities of AI chatbots in domain-specific fields by 

presenting performance changes from LLM to LMM chatbots. 
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2. MATERIALS AND METHODS 

 

The overall workflow is presented in Fig. 1. 

 

 

Fig. 1 Overall workflow of this study. 
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2.1. Question preparation and categorization 

 

The study utilized a total of 90 examination questions from the oral and maxillofacial 

radiology (OMFR) curriculum at Yonsei University College of Dentistry. The questions 

were selected from mid- and end-of-semester examinations administered in April and June 

2023 and were developed by experienced oral and maxillofacial radiologists. All questions 

were originally written in Korean, the native language of the students. Essay-format 

questions that lacked objective scoring criteria were excluded from the question set. 

The questions were categorized into two groups and further subdivided by specific 

educational content as follows: 

i. Text-only questions (n=52): These items did not contain any visual elements 

and consisted entirely of text. 

 Basic knowledge (n=16): Understanding of X-ray generation and 

measurement units, radiation biology, exposure and protection principles. 

 Imaging and equipment (n=27): Understanding of panoramic radiography, 

periapical radiography, cone-beam computed tomography (CBCT), 

magnetic resonance imaging (MRI), and digital imaging systems. 

 Image interpretation (n=9): Interpretation of radiographic features associated 

with cysts, trauma, fractures, soft tissue calcifications, and systemic diseases 

involving the oral and maxillofacial region. 

ii. Image-based questions (n=38): These items included visual elements such as 

dental radiographic images, illustrations, schematic diagrams, or graphs. 

 Understanding radiographic imaging (n=11): Comprehension of digital 

image characteristics (e.g., bit depth, grayscale levels, window width and 

window center), identification of imaging artifacts or acquisition errors, and 

schematic understanding of X-ray power supply and generation systems. 

 Normal anatomical structures (n=14): Identification of normal hard and soft 
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tissue anatomical structures as seen on panoramic and periapical radiography, 

computed tomography (CT), and magnetic resonance imaging (MRI). 

 Radiographic diagnosis (n=13): Recognition of radiographic manifestations 

of cysts, tumors, fractures, soft tissue calcifications, other bone diseases, and 

systemic conditions on various dental radiographs. 

The questions were also classified by question format: 

i. Multiple-choice questions (MCQs; n=48): These items required to select only 

one correct answer among multiple options.  

ii. Short-answer questions (SAQs; n=42): These items required a clear and 

concise response that involved no inference or subjective judgment. 
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2.2. Educational background of dental students 

 

A total of 120 dental students – 58 in their third-year and 62 in their fifth-year – were 

enrolled in the examinations, which formed an integral component of the structured dental 

curriculum. These students served as the reference group for evaluating the performance of 

LLM and LMM chatbots on identical test items. Each set of examinations was 

independently designed by the oral and maxillofacial radiologists leading the respective 

course. As the assessments were conducted as part of routine academic instruction, 

individual consent from the students or institutional review board (IRB) approval was not 

required.  

Third-year students received 32 hours of conventional classroom instruction, 

delivered by a radiologist with 29 years of clinical and teaching experience. They were 

assessed on basic knowledge, imaging and equipment, understanding radiographic imaging, 

and normal anatomical structures. Fifth-year students underwent 16 hours of instruction 

provided by a radiologist with 26 years of experience. Their curriculum focused on 

advanced diagnostic skills, and their examination primarily covered the domains of image 

interpretation and radiographic diagnosis. 
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2.3. Model descriptions and input strategies 

 

2.3.1. Large language model chatbots 

Four text-based large language model (LLM) chatbots – ChatGPT, ChatGPT Plus, 

Bard, and Bing Chat – were evaluated using 52 text-only questions, as these models did 

not support image input at the time. The assessments were conducted between July and 

September 2023. 

ChatGPT and ChatGPT Plus (OpenAI, San Francisco, California, USA) are based on 

OpenAI’s GPT-3.5 and GPT-4 architectures, respectively. ChatGPT did not support real-

time internet access, and its responses were generated solely from pre-trained data (cutoff: 

September 2021). ChatGPT Plus also relied primarily on pre-trained data (cutoff: January 

2023), but real-time web access was available through the optional use of the “web 

browsing” setting.  

Bard (Google, Mountain view, California, USA) is built on Google’s Pathways 

Language Model (PaLM) and the Language Model for Dialogue Applications (LaMDA), 

and it supported real-time web access through integration with Google Search. Bing Chat 

(Microsoft, Redmond, Washington, USA) is powered by Microsoft’s Prometheus model, 

built upon GPT-4, and also provided real-time internet search capabilities. The training data 

for Bard was current up to April 2023, and Bing Chat’s was up to March 2023 at the time 

of evaluation.  
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2.3.2. Large multimodal model chatbots 

Two large multimodal models (LMM) chatbots – ChatGPT-4o and Gemini 2.0 Flash 

– were evaluated using all 90 questions, which included 52 text-only and 38 image-based 

items. The assessments were conducted between February and March 2025. 

ChatGPT-4o (OpenAI, San Francisco, California, USA) is based on the GPT-4 

architecture and integrates multimodal capabilities, including text, image, and audio input. 

While it includes a web browsing feature, ChatGPT-4o does not access real-time 

information by default; unless the user manually enables the browsing function before 

submitting a prompt, responses are generated solely from its internal knowledge base, last 

updated in October 2023. 

Gemini 2.0 Flash (Google DeepMind, London, England) is a lightweight variant of 

the Gemini 2.0 architecture, which combines large language modeling with multimodal 

pre-training. Unlike ChatGPT-4o, Gemini 2.0 Flash support real-time internet access by 

default through integration with Google Search. Its training data was current up to 

December 2023 at the time of evaluation.  
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2.3.3. Prompt formatting and input strategies 

All questions were entered into each chatbot in Korean, as they were originally 

administered in the student examinations. To maintain consistency and ensure objective 

evaluation, input queries were standardized across models.  

All items were reformatted to require a single response. Detailed instructions such as 

“Select the most accurate/inaccurate statement” or “Write the most appropriate response” 

were included, depending on the question type. For SAQs requiring the identification of 

specific term described in a statement, a blank space was inserted within the sentence to 

prompt the chatbot to generate a direct and contextually appropriate answer. 

In the LLM chatbots evaluation, a single-input strategy was employed (Lin, Chan, 

Hsu, & Kao, 2024), in which each question was entered only once per model without any 

rephrasing, repetition, or follow-up attempts. This approach was intended to mirror the 

conditions under which students completed their examinations, ensuring a fair and realistic 

comparison between human and model performance. 

For LMM chatbots, each question was submitted ten times in independent chat 

sessions to evaluate response consistency, considering the potential variability of 

multimodal processing. However, in order to evaluate response accuracy under conditions 

consistent with the LLM protocol, only the first response of LMM chatbots was used for 

scoring. 

To enhance transparency and methodological rigor, this study referenced the 

MInimum reporting items for CLear Evaluation of Accuracy Reports of Large Language 

Models in healthcare (MI-CLEAR-LLM) checklist (Park, Suh, Lee, Kahn Jr, & Moy, 2024). 

A detailed account of how each checklist item was addressed is provided in Table 1.  
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Table 1. Checklist of evaluation strategies and input conditions (Park et al., 2024).  

Checklist item Application in this study 

Handling of stochasticity  

 Number of query attempts  One attempt per question for LLM 

chatbots; ten independent attempts for 

LMM chatbots. 

 Response synthesis method and 

rationale 

 To mirror real student testing 

conditions, only the first response 

generated by the model was used for 

accuracy evaluation. 

 Response consistency analysis  Response consistency was assessed by 

analyzing the agreement among ten 

responses for each question.  

 Technical parameter settings  No hyperparameters (e.g., 

temperature) were modified; default 

settings were used. 

Exact prompt wording and syntax  

 Prompt formatting details   Prompts maintained consistent and 

precise use of spelling, symbols, 

punctuation, and spacing. 

Prompt application procedure 
 

 Query session structure  Multiple items were entered 

sequentially within a single chat 

session per model. 

 Query input sequence  Items were submitted one at a time 

over multiple chat rounds to isolate 

responses. 
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Prompt testing and optimization 
 

 Prompt development steps  All items included a directive to select 

the most appropriate responses; SAQs 

were further reformatted with blank 

spaces to elicit concise answers. 

 Prompt wording rationale  Terminology was drawn from 

standard oral and maxillofacial 

radiology textbooks to reflect 

academic appropriateness. 

Dataset independence 
 

 Use of test data in model training or 

prompt tuning 

 None of the items were used in the 

training or prompt tuning of any 

chatbot models. 

 Data source URL disclosure  Not applicable. 

LLM, large language model; LMM, large multimodal model; SAQ, short-answer question.  
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2.4. Data analysis 

 

2.4.1. Accuracy 

Accuracy was assessed using a single response from each LLM chatbot and the first 

of ten responses from each LMM chatbot. Accuracy was calculated as the percentage of 

correct responses out of the total number of questions. Analyses were conducted across 

three dimensions – overall performance, educational content category, and question type – 

using student scores as a reference standard for comparison.  

To ensure consistency and objectivity in the evaluation of both chatbot-generated and 

student responses, test items were independently developed by course instructors and 

thoroughly reviewed through three iterative rounds to minimize potential grading 

inconsistencies. MCQ responses were classified as either correct of incorrect to eliminate 

evaluator bias. SAQs were designed to elicit concise, fact-based answers requiring the 

identification of specific key terms rather than interpretive reasoning, thereby minimizing 

the need for subjective judgment. Any response that deviated from the reference answer in 

format or spelling was marked as incorrect. 
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2.4.2. Response consistency 

Response consistency was assessed for LMM chatbots due to the inherent variability 

of multimodal input processing. Each question was submitted ten times in separate chat 

sessions, and response set was considered consistent if the responses were identical in 

content, regardless of correctness. For short-answer responses, a rule-based normalization 

process was applied prior to comparison to account for minor lexical variations that 

retained equivalent meaning. Expressions with negligible differences – such as spacing, 

inflectional suffixes, or commonly interchangeable terminology – were considered 

equivalent and treated as consistent responses during this assessment. 

Response consistency was evaluated by calculating the mean percentage agreement 

across ten repeated outputs. To quantify agreement beyond chance, Fleiss’ kappa 

coefficient was calculated using SPSS software (version 26.0; IBM Corp., Armonk, NY, 

USA), with a two-tailed significance level set at 0.05. 
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2.4.3. Hallucination 

LMM chatbots, which are more susceptible to hallucinations due to their multimodal 

nature, were evaluated based on the first response out of ten generated for each question, 

in accordance with the protocol used for accuracy evaluation. Two oral and maxillofacial 

radiologists who had administered the test questions independently rated the responses 

using the modified Global Quality Scales (GQS) (Bernard et al., 2007), a five-point scale 

ranging from 1 (poor) to 5 (excellent) (Table 2). The evaluation considered not only the 

factual correctness of each answer but also the validity and appropriateness of the 

underlying reasoning and supporting evidence (Fig. 2). The results were analyzed using 

descriptive statistics (mean and standard deviation). 

 

Table 2. Modified Global Quality Scales (GQS) (Bernard et al., 2007). 

Score Quality Description 

1 Poor 
Disorganized flow of the information, most key information 

missing, not useful for patients or education. 

2 
Generally 

poor 

Poorly structured flow of the information, many key 

information missing, very limited usefulness for patients or 

education.  

3 Moderate 

Suboptimal flow of the information, some key information 

missing or incomplete, limited usefulness for patients or 

education. 

4 Good 
Well-organized flow or the information, most key information 

included, generally useful for patients or education. 

5 Excellent 
Clear and logical flow of the information, all key information 

included, highly useful for patients or education. 
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Fig. 2 An example of a chatbot response. Hallucination was evaluated based on both the 

chatbots’ answer and the validity of its supporting evidence. (The input of the question and 

the output of the response were both in Korean, but an English translation is provided in 

this figure for the reader’s convenience.) 
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2.4.4. Zero-shot chain-of-thought 

ZS-CoT prompting was applied to evaluate whether stepwise reasoning could enhance 

model performance. This strategy was implemented for the LMM chatbots across all 

questions, including both text-only and image-based items. A single sentence – “Let’s think 

step by step” – was added in Korean at the beginning of each standardized input query, 

with no further modifications to the original formatting.  

Model performance under the ZS-CoT condition was evaluated by calculating 

accuracy as the percentage of correct responses out of the total number of questions. These 

results were compared to the model’s original performance without ZS-CoT prompting to 

assess the effectiveness of the strategy. 
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3. RESULTS 

 

3.1. Accuracy 

 

Table 3 presents the overall accuracy rates of the six chatbots evaluated in this study. 

Among the LLM chatbots, ChatGPT Plus achieved the highest accuracy (65.4%), followed 

by Bing Chat (63.5%). ChatGPT and Bard recorded the lowest accuracy, both at 50.0%. In 

the LMM group, ChatGPT-4o and Gemini 2.0 Flash achieved accuracy rates of 61.1% and 

58.9%, respectively. 

In comparison to the dental student reference scores (81.2% for text-only items and 

77.7% for text- and image-based items), all chatbot models showed lower accuracy than 

the students’ scores. 

 

Table 3. Accuracy rates and comparison with reference standard (dental student scores). 

Chatbot 

classification 
Name Accuracy Ref.  

LLM 

ChatGPT 50.0 

81.2 

ChatGPT Plus 65.4 

Bard 50.0 

Bing Chat 63.5 

LMM 

ChatGPT-4o 61.1 

77.7 

Gemini 2.0 Flash 58.9 

LLM, large language model; LMM, large multimodal model; Ref., reference standard 

(dental student scores). 
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3.1.1. Accuracy based on educational content 

Table 4 presents the accuracy of chatbot responses across different educational content 

categories. Among the LLM chatbots evaluated on text-only questions, ChatGPT Plus 

achieved the highest accuracy in basic knowledge (93.8%), surpassing the dental student 

reference score of 78.7%. In the imaging and equipment category, Bing Chat scored 74.1%, 

which was higher than other LLM chatbots but still below the student score of 83.5%. For 

image interpretation, LLM chatbots showed accuracy ranging from 22.2% (ChatGPT Plus) 

to 33.3% (ChatGPT, Bard, and Bing Chat). 

For the LMM chatbots in text-only questions, ChatGPT-4o and Gemini 2.0 Flash 

achieved accuracy rates of 86.5% and 82.7%, respectively, both exceeding the student score 

of 81.2%. Gemini 2.0 Flash achieved 100.0% accuracy in the basic knowledge category. 

Compared to ChatGPT Plus – an earlier model from the same developer – ChatGPT-4o 

showed an improvement of 25.9 percentage points in imaging and equipment, and 55.6 

points in image interpretation (Fig. 3A). Similarly, Gemini 2.0 Flash outperformed its 

predecessor Bard by 50.0 points in basic knowledge, 18.5 points in imaging and equipment, 

and 44.5 points in image interpretation, as illustrated in Fig. 3B.  

Image-based questions were evaluated using LMM chatbots only. Both ChatGPT-4o and 

Gemini 2.0 Flash scored 26.3%, below the student reference score of 72.9%. The categories 

of interpreting normal anatomy (ChatGPT-4o: 14.3%, Gemini 2.0 Flash: 21.4%) and 

radiographic diagnosis (15.4% for both chatbots) yielded the lowest accuracy rates across 

all content categories.  
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Table 4. Accuracy rates based on educational content and comparison with reference 

standard (dental student scores). 

 

LLM LMM 

Ref. 
Chat 

GPT 

ChatGPT 

Plus 
Bard 

Bing 

Chat 

ChatGPT-

4o 

Gemini 2.0 

Flash 

Text 

-only  

(n=52) 

Basic knowledge 

(n=16) 
31.3 93.8 50.0 68.8 87.5 100.0 78.7 

Imaging and 

equipment  

(n=27) 

66.7 63.0 55.6 74.1 88.9 74.1 83.5 

Image interpretation 

(n=9) 
33.3 22.2 33.3 33.3 77.8 77.8 78.3 

TOTAL (n=52) 50.0 65.4 50.0 63.5 86.5 82.7 81.2 

Image 

-based  

(n=38) 

Understanding 

radiographic imaging 

(n=11) 

- - - - 54.5 45.5 75.4 

Interpreting  

 normal anatomy 

(n=14) 

- - - - 14.3 21.4 64.8 

Radiographic 

diagnosis 

(n=13) 

- - - - 15.4 15.4 79.5 

TOTAL (n=38) - - - - 26.3 26.3 72.9 

LLM, large language model; LMM, large multimodal model; Ref., reference standard 

(dental student scores). 
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Fig. 3 Accuracy comparison between LLM and LMM chatbots across educational content 

categories in text-only questions. (A) Performance comparison between ChatGPT Plus 

(LLM) and ChatGPT-4o (LMM), (B) Performance comparison between Bard (LLM) and 

Gemini 2.0 Flash (LMM). 
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3.1.2. Accuracy based on question type 

Table 5 summarizes chatbot performance based on question type. For text-only 

questions, all LLM chatbots showed higher accuracy on SAQs than on MCQs. ChatGPT 

and ChatGPT Plus each achieved 85.7% accuracy on SAQs, while their MCQ scores were 

lower at 36.8% and 57.9%, respectively. Bard showed the smallest performance gap 

between the two question types, with 47.4% accuracy on MCQs and 57.1% on SAQs – a 

difference of 9.7 percentage points. 

Among the LMM chatbots, ChatGPT-4o achieved an accuracy of 86.8% on MCQs 

and 85.7% on SAQs, representing a 28.9 percentage point increase in MCQ performance 

compared to ChatGPT Plus (Fig. 4A). Gemini 2.0 Flash scored 78.9% on MCQs and 92.9% 

on SAQs, showing the same pattern observed in LLM chatbots, where SAQ performance 

exceeded that of MCQs. Compared to Bard, Gemini 2.0 Flash showed improvements of 

31.5 points on MCQs and 35.8 points on SAQs (Fig. 4B). 

In image-based questions, both ChatGPT-4o and Gemini 2.0 Flash recorded higher 

accuracy on MCQs (60.0% and 50.0%, respectively) than on SAQs (14.3% and 17.9%, 

respectively). Neither model exceeded the student reference scores, which were 76.7% for 

MCQs and 71.5% for SAQs.  
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Table 5. Accuracy rates based on question type and comparison with reference standard 

(dental student scores). 

 

LLM LMM 

Ref. 
Chat 

GPT 

ChatGPT 

Plus 
Bard 

Bing 

Chat 

ChatGPT-

4o 

Gemini 2.0 

Flash 

Text 

-only  

(n=52) 

Multiple-choice 

question (n=38) 
36.8 57.9 47.4 57.9 86.8 78.9 80.5 

Short-answer  

question (n=14) 
85.7 85.7 57.1 78.6 85.7 92.9 82.9 

TOTAL (n=52) 50.0 65.4 50.0 63.5 86.5 82.7 81.2 

Image 

-based  

(n=38) 

Multiple-choice 

question (n=10) 
- - - - 60.0 50.0 76.7 

Short-answer  

question (n=28) 
- - - - 14.3 17.9 71.5 

TOTAL (n=38) - - - - 26.3 26.3 72.9 

LLM, large language model; LMM, large multimodal model; Ref., reference standard 

(dental student scores). 
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Fig. 4 Accuracy comparison between LLM and LMM chatbots across question type in text-

only questions. (A) Performance comparison between ChatGPT Plus (LLM) and ChatGPT-

4o (LMM), (B) Performance comparison between Bard (LLM) and Gemini 2.0 Flash 

(LMM). 
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3.2. Response consistency 

 

Response consistency was evaluated by comparing the consistency of ten 

independently generated responses for each question, regardless of correctness. Agreement 

was evaluated using both percentage agreement and Fleiss’ kappa coefficient. According 

to established interpretation guidelines (Landis & Koch, 1977), a kappa value between 

0.00-0.20 indicates “Slight” agreement, 0.21-0.40 indicates “Fair” agreement, 0.41-0.60 

indicates “Moderate” agreement, 0.61-0.80 indicates “Substantial” agreement, and values 

above 0.80 represent “Almost perfect” agreement. 

Overall results of the response consistency assessment are shown in Table 6. 

ChatGPT-4o demonstrated a mean percentage agreement of 80.9% across ten responses per 

question, and Gemini 2.0 Flash showed 81.4% of agreement. Fleiss’ kappa values were 

0.709 and 0.722 for ChatGPT-4o and Gemini 2.0 Flash, respectively, both interpreted as 

indicating “Substantial” agreement.  

 

Table 6. Response consistency evaluation and interpretation.  

 Mean % agree κ value Interp. 

ChatGPT-4o 80.9 0.709 Substantial 

Gemini 2.0 Flash 81.4 0.722 Substantial 

Mean % agree, average percentage of the most frequent response among ten repeated 

outputs; κ value, Fleiss’ kappa coefficient; Interp., interpretation of κ value based on 

standard agreement levels. 
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3.2.1. Response consistency based on educational content 

Table 7 presents the response consistency of the LMM chatbots across different 

educational content categories, based on ten repeated outputs per question. For text-only 

questions, ChatGPT-4o achieved mean agreement rates of 95.6% for basic knowledge,  

97.0% for imaging and equipment, and 94.4% for image interpretation, with corresponding 

Fleiss’ kappa values ranging from 0.863 to 0.948, all interpreted as “Almost perfect.” 

Gemini 2.0 Flash showed mean agreement rates of 96.3%, 97.8%, and 95.6%, and κ values 

between 0.900 and 0.962, also categorized as “Almost perfect.” The overall consistency 

for text-only questions was 96.2% (κ = 0.926) for ChatGPT-4o and 96.9% (κ = 0.945) for 

Gemini 2.0 Flash. 

For image-based questions, ChatGPT-4o demonstrated mean agreement ranged from 

49.2% to 80.0%, and κ values from 0.267 to 0.617. Gemini 2.0 Flash showed agreement 

rates between 48.5% and 85.5%, and κ values ranging from 0.271 to 0.719. The highest 

consistency was observed in the category of understanding radiographic imaging, where 

both chatbots achieved “Substantial” agreement. However, in interpreting normal anatomy 

and radiographic diagnosis, agreement levels dropped to the “Fair” range. The total 

consistency for image-based questions was 60.0% (κ = 0.427) for ChatGPT-4o and 60.3% 

(κ = 0.433) for Gemini 2.0 Flash, both interpreted as “Moderate.” 
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Table 7. Response consistency evaluation and interpretation based on educational content. 

 

ChatGPT-4o Gemini 2.0 Flash 

Mean  

% agree 
κ value Interp. 

Mean  

% agree 
κ value Interp. 

Text 

-only 

(n=52) 

Basic knowledge 

(n=16) 
95.6 0.910 

Almost 

perfect 
96.3 0.928 

Almost 

perfect 

Imaging and 

equipment  

(n=27) 

97.0 0.948 
Almost 

perfect 
97.8 0.962 

Almost 

perfect 

Image interpretation 

(n=9) 
94.4 0.863 

Almost 

perfect 
95.6 0.900 

Almost 

perfect 

TOTAL (n=52) 96.2 0.926 
Almost 

perfect 
96.9 0.945 

Almost 

perfect 

Image 

-based  

(n=38) 

Understanding 

radiographic imaging 

(n=11) 

80.0 0.617 Substantial 85.5 0.719 Substantial 

Interpreting  

normal anatomy 

(n=14) 

54.3 0.338 Fair 51.4 0.304 Fair 

Radiographic 

diagnosis 

(n=13) 

49.2 0.267 Fair 48.5 0.271 Fair 

TOTAL (n=38) 60.0 0.427 Moderate 60.3 0.433 Moderate 

Mean % agree, average percentage of the most frequent response among ten repeated 

outputs; κ value, Fleiss’ kappa coefficient; Interp., interpretation of κ value based on 

standard agreement levels. 
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3.2.2. Response consistency based on question type 

Table 8 summarizes the response consistency of LMM chatbots for each question type, 

based on ten repeated outputs per item. For text-only questions, ChatGPT-4o showed a 

mean agreement of 96.3% for MCQs and 95.7% for SAQs, with Fleiss’ kappa values of 

0.923 and 0.916, respectively. These values fall within the “Almost perfect” category of 

agreement. Gemini 2.0 Flash demonstrated a mean agreement rates of 97.1% (κ = 0.939) 

for MCQs and 96.4% (κ =0.944) for SAQs, also interpreted as “Almost perfect.”  

For image-based questions, ChatGPT-4o achieved a mean agreement of 82.0% (κ = 

0.635) for MCQs, corresponding to “Substantial” agreement, and 52.1% (κ = 0.324) for 

SAQs, interpreted as “Fair.” Gemini 2.0 Flash showed 51.1% agreement (κ = 0.312) for 

image-based SAQs, categorized as “Fair.”  
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Table 8. Response consistency evaluation and interpretation based on question type. 

 

ChatGPT-4o Gemini 2.0 Flash 

Mean  

% agree 
κ value Interp. 

Mean  

% agree 
κ value Interp. 

Text 

-only 

(n=52) 

Multiple-choice 

question (n=38) 
96.3 0.923 

Almost 

perfect 
97.1 0.939 

Almost 

perfect 

Short-answer  

question (n=14) 
95.7 0.916 

Almost 

perfect 
96.4 0.944 

Almost 

perfect 

TOTAL (n=52) 96.2 0.926 
Almost 

perfect 
96.9 0.945 

Almost 

perfect 

Image 

-based  

(n=38) 

Multiple-choice 

question (n=10) 
82.0 0.635 Substantial 86.0 0.722 Substantial 

Short-answer  

question (n=28) 
52.1 0.324 Fair 51.1 0.312 Fair 

TOTAL (n=38) 60.0 0.427 Moderate 60.3 0.433 Moderate 

Mean % agree, average percentage of the most frequent response among ten repeated 

outputs; κ value, Fleiss’ kappa coefficient; Interp., interpretation of κ value based on 

standard agreement levels. 
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3.3. Hallucination  

 

Table 9 shows the hallucination evaluation results of the two LMM chatbots, by two oral 

and maxillofacial radiologists, based on the modified Global Quality Scales (GQS) 

(Bernard et al., 2007). To facilitate standardized interpretation of the GQS score, the mean 

scores were categorized into five levels of quality as follows: scores between 0.00 and 1.00 

were interpreted as “Poor,” 1.01 to 2.00 as “Generally poor,” 2.01 to 3.00 as “Moderate,” 

3.01 to 4.00 as “Good,” and 4.01 to 5.00 as “Excellent.” 

The mean GQS score was 3.37 (SD = 1.77) for ChatGPT-4o and 3.41 (SD = 1.79) for 

Gemini 2.0 Flash. According to the predefined interpretation criteria, both chatbots were 

classified as “Good.” 

 

Table 9. Hallucination evaluation and interpretation. 

 M ± SD Interp. 

ChatGPT-4o 3.37 ± 1.77 Good 

Gemini 2.0 Flash 3.41 ± 1.79 Good 

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score 

values based on predefined score ranges. 
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3.3.1. Hallucination evaluation based on educational content 

Table 10 presents the hallucination evaluation results by educational content 

categories. For text-only questions, ChatGPT-4o showed mean GQS score of 4.41 (SD = 

1.16) in basic knowledge, 4.41 (SD = 1.10) in imaging and equipment, and 3.56 (SD = 1.81) 

in image interpretation. Gemini 2.0 Flash recorded 4.50 (SD = 1.02), 4.22 (SD = 1.27), and 

4.11 (SD = 1.76) in the respective categories. According to the predefined interpretation 

criteria, both chatbots were classified as “Excellent” in basic knowledge and imaging and 

equipment. In image interpretation, ChatGPT-4o was classified as “Good,” and Gemini 2.0 

Flash was classified as “Excellent.” 

For image-based questions, mean GQS score for ChatGPT-4o were 3.55 (SD = 1.77) 

in understanding radiographic imaging, 1.82 (SD = 1.49) in interpreting normal anatomy, 

and 1.31 (SD = 0.75) in radiographic diagnosis. Gemini 2.0 Flash showed corresponding 

scores of 3.55 (SD = 1.81), 1.61 (SD = 1.36), and 1.69 (SD = 1.30). Both chatbots were 

classified as “Good” for understanding radiographic imaging and as “Generally poor” for 

both interpreting normal anatomy and radiographic diagnosis.  
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Table 10. Hallucination evaluation and interpretation based on educational content.  

 

ChatGPT-4o Gemini 2.0 Flash 

M ± SD Interp. M ± SD Interp. 

Text 

-only 

(n=52) 

Basic knowledge 

(n=16) 
4.41 ± 1.16 Excellent 4.50 ± 1.02 Excellent 

Imaging and 

equipment  

(n=27) 

4.41 ± 1.10 Excellent 4.22 ± 1.27 Excellent 

Image interpretation 

(n=9) 
3.56 ± 1.81 Good 4.11 ± 1.76 Excellent 

TOTAL (n=52) 4.26 ± 1.28 Excellent 4.29 ± 1.28 Excellent 

Image 

-based  

(n=38) 

Understanding 

radiographic imaging 

(n=11) 

3.55 ± 1.77 Good 3.55 ± 1.81 Good 

Interpreting  

normal anatomy 

(n=14) 

1.82 ± 1.49 
Generally 

poor 
1.61 ± 1.36 

Generally 

poor 

Radiographic 

diagnosis 

(n=13) 

1.31 ± 0.75 
Generally 

poor 
1.69 ± 1.30 

Generally 

poor 

TOTAL (n=38) 2.14 ± 1.64 Moderate 2.20 ± 1.69 Moderate 

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score 

values based on predefined score ranges. 
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3.3.2. Hallucination evaluation based on question type 

Table 11 summarizes the hallucination evaluation results by question type. For text-

only MCQs, ChatGPT-4o recorded a mean score of 4.24 (SD = 1.27) and Gemini 2.0 Flash 

recorded 4.13 (SD = 1.33). In text-only SAQs, the mean GQS score was 4.32 (SD = 1.34) 

for ChatGPT-4o and 4.71 (SD = 1.07) for Gemini 2.0 Flash. All of these scores were 

classified as “Excellent” based on the predefined interpretation criteria. 

For image-based MCQs, both ChatGPT-4o and Gemini 2.0 Flash recorded identical 

mean scores of 3.60, with standard deviations of 1.85 and 1.90, respectively. These were 

classified as “Good.” In image-based SAQs, mean GQS score were 1.63 (SD = 1.21) for 

ChatGPT-4o and 1.70 (SD = 1.31) for Gemini 2.0 Flash, corresponding to “Generally poor.”  
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Table 11. Hallucination evaluation and interpretation based on question type. 

 

ChatGPT-4o Gemini 2.0 Flash 

M ± SD Interp. M ± SD Interp. 

Text 

-only  

(n=52) 

Multiple-choice 

question (n=38) 
4.24 ± 1.27 Excellent 4.13 ± 1.33 Excellent 

Short-answer  

question (n=14) 
4.32 ± 1.34 Excellent 4.71 ± 1.07 Excellent 

TOTAL (n=52) 4.26 ± 1.28 Excellent 4.29 ± 1.28 Excellent 

Image 

-based  

(n=38) 

Multiple-choice 

question (n=10) 
3.60 ± 1.85 Good 3.60 ± 1.90 Good 

Short-answer  

question (n=28) 
1.63 ± 1.21 

Generally 

poor 
1.70 ± 1.31 

Generally 

poor 

TOTAL (n=38) 2.14 ± 1.64 Moderate 2.20 ± 1.69 Moderate 

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score 

values based on predefined score ranges. 
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3.4. Zero-shot chain-of-thought  

 

Table 12 presents the change in accuracy for the two LMM chatbots when ZS-CoT 

prompting was applied. For ChatGPT-4o, accuracy decreased from 61.1% to 52.2%, 

showing a performance decline of 8.9 percentage points under the ZS-CoT condition, and 

Gemini 2.0 Flash showed 1.1 percentage points improvement, with accuracy increasing 

from 58.9% to 60.0%. Both models underperformed compared to the reference standard 

score of 77.7%. 

 

Table 12. Accuracy changes with zero-shot chain-of-thought and comparison with 

reference standard (dental student scores). 

 Original ZS-CoT Ref. 

ChatGPT-4o 61.1 52.2 

77.7 

Gemini 2.0 Flash 58.9 60.0 

Ref., reference standard (dental student scores); ZS-CoT, zero-shot chain-of-thought; Diff., 

difference in accuracy between original and zero-shot chain-of-thought conditions. 
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3.4.1. Changes in accuracy rates after applying zero-shot chain-of-thought based on 

educational content 

Table 13 shows the accuracy of LMM chatbots under original and ZS-CoT prompting 

conditions, categorized by educational content. For ChatGPT-4o, no improvement 

observed in any content category. The largest decline occurred in image interpretation, 

where accuracy dropped from 77.8% to 33.3% (-44.5 points). Basic knowledge remained 

unchanged (87.5%), imaging and equipment decreased by 3.7 points (from 88.9% to 

85.2%), and all image-based subcategories also showed declines ranging from -7.2 to -9.0 

points.  

For Gemini 2.0 Flash, the largest improvement was observed in radiographic 

diagnosis, where accuracy increased from 15.4% to 38.5% (+23.1 points). In other 

categories, basic knowledge decreased by 6.2 points (from 100.0% to 93.8%), and image 

interpretation decreased by 11.1 points (from 77.8% to 66.7%). No change was observed 

in imaging and equipment (74.1%), understanding radiographic imaging (45.5%), and 

interpreting normal anatomy (21.4%). 
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Table 13. Accuracy changes with zero-shot chain-of-thought based on educational content, 

and comparison with reference standard (dental student scores). 

 

ChatGPT-4o Gemini 2.0 Flash 

Ref. 

Original ZS-CoT Original ZS-CoT 

Text 

-only  

(n=52) 

Basic knowledge  

(n=16) 
87.5 87.5 100.0 93.8 78.7 

Imaging and equipment  

(n=27) 
88.9 85.2 74.1 74.1 83.5 

Image interpretation 

(n=9) 
77.8 33.3 77.8 66.7 78.3 

TOTAL (n=52) 86.5 76.9 82.7 78.8 81.2 

Image 

-based  

(n=38) 

Understanding 

radiographic imaging 

(n=11) 

54.5 45.5 45.5 45.5 75.4 

Interpreting  

normal anatomy 

(n=14) 

14.3 7.1 21.4 21.4 64.8 

Radiographic diagnosis 

(n=13) 
15.4 7.7 15.4 38.5 79.5 

TOTAL (n=38) 26.3 18.4 26.3 34.2 72.9 

ZS-CoT, zero-shot chain-of-thought; Ref., reference standard (dental student scores). 

 

 

  



40 

 

3.4.2. Changes in accuracy rates after applying zero-shot chain-of-thought based on 

question type 

Table 14 presents the accuracy of LMM chatbots under original and ZS-CoT 

prompting conditions, categorized by question type. For ChatGPT-4o, the largest decrease 

was observed in MCQs for text-only questions, with accuracy declining from 86.8% to 

71.1% (-15.7 points). SAQs in the same category increased from 85.7% to 92.9% (+7.2 

points), surpassing the student score of 82.9%. For image-based questions, both MCQs and 

SAQs declined – from 50.0% to 40.0% (-10.0 points) and from 14.3% to 7.1% (-7.2 points), 

respectively. 

For Gemini 2.0 Flash, MCQ accuracy declined from 78.9% to 73.7% (-5.2 points), 

and SAQ performance unchanged at 92.9%, exceeding the student score of 82.9% in text-

only questions. For image-based questions, MCQ accuracy remained at 50.0%. The 

accuracy of SAQ increased from 17.9% to 28.6% (+10.7 points), but still fell short of the 

student reference score of 71.5%. 
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Table 14. Accuracy changes with zero-shot chain-of-thought based on question type, and 

comparison with reference standard (dental student scores). 

 

ChatGPT-4o Gemini 2.0 Flash 

Ref. 

Original ZS-CoT Original ZS-CoT 

Text 

-only  

(n=52) 

Multiple-choice  

question (n=38) 
86.8 71.1 78.9 73.7 80.5 

Short-answer  

question (n=14) 
85.7 92.9 92.9 92.9 82.9 

TOTAL (n=52) 86.5 76.9 82.7 78.8 81.2 

Image 

-based  

(n=38) 

Multiple-choice  

question (n=10) 
50.0 40.0 50.0 50.0 76.7 

Short-answer  

question (n=28) 
14.3 7.1 17.9 28.6 71.5 

TOTAL (n=38) 23.7 15.8 26.3 34.2 72.9 

ZS-CoT, zero-shot chain-of-thought; Ref., reference standard (dental student scores). 
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4. DISCUSSION 

 

LLMs are transformer-based AI systems trained on extensive textual datasets to 

generate coherent and contextually relevant responses. Extending this architecture, LMMs 

can simultaneously process and integrate information from diverse sources, including 

images, audio, and video. Chatbots based on these models are now widely accessible and 

have garnered increasing interest for their potential applications in dental education and 

clinical decision support. However, the performance of LLM and LMM chatbots has not 

been fully studied in specialized fields such as OMFR, where both factual knowledge and 

image interpretation are essential. To address this gap, this study evaluated the performance 

of these models using standardized examination items and provided insights into their 

current utility and limitations in the OMFR field. 

This study evaluated the performance of four LLM chatbots (ChatGPT, ChatGPT Plus, 

Bard, Bing Chat) and two LMM chatbots (ChatGPT-4o, Gemini 2.0 Flash) using 90 

examination questions from the OMFR curriculum, comprising 52 text-only and 38 image-

based items. All questions were entered into the chatbots in Korean and were slightly 

reformatted to ensure a consistent prompt structure. For further analysis, the items were 

grouped into six educational content categories and two question types. As no official 

passing threshold was defined for this examination, the performance of dental students who 

had previously completed the same test was used as the reference standard. 

Across all six chatbots evaluated in this study, none outperformed the dental student 

reference score. ChatGPT Plus demonstrated the highest overall accuracy among the LLM 

chatbots at 65.4%, showing a 15.8 percentage point gap compared to student performance. 

Although this trend is consistent with prior studies (Ali et al., 2023; Danesh, Pazouki, 

Danesh, Danesh, & Vardar‐Sengul, 2024; Ohta & Ohta, 2023; Toyama et al., 2024) the 

performance of ChatGPT Plus in this study did not reach the highest accuracy levels 
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reported for the top-performing LLMs in other medical and dental domains – such as 82.6% 

in neurosurgery (Ali et al., 2023), 87.11% in radiology (Patil, Huang, van der Pol, & 

Larocque, 2024), 70.8% in respiratory medicine (Rahsepar et al., 2023)), and 73.6% in 

periodontology (Danesh et al., 2024). ChatGPT-4o and Gemini 2.0 Flash also failed to 

achieve the dental student score. This result aligns with findings from a recent evaluation 

using the 2024 Japanese National Dental Examination (Mine et al., 2025), in which 

ChatGPT-4o scored 64.3% and Gemini 2.0 Flash scored 57.1% in the OMFR domain – 

both performances comparable to those observed in the present study. 

In text-based questions, LMM chatbots – ChatGPT-4o and Gemini 2.0 Flash – 

demonstrated clear improvements over their LLM-based predecessors and outperformed 

the dental student reference score of 81.2%. Notably, the most pronounced gains were 

observed in the image interpretation category, where the LLM chatbots had previously 

shown poor performance (22.2% for ChatGPT Plus and 33.3% for Bard); in contrast, both 

LMMs achieved 77.8% accuracy in the same category. These results are consistent with 

findings from a recent study by Tassoker (2025), which evaluated chatbot performance on 

123 multiple-choice questions in the OMFR domain (Tassoker, 2025). In that study, the 

LMM-based ChatGPT-4o achieved the highest accuracy (86.1%), followed by the LLM 

chatbots Bard (61.8%), ChatGPT (43.9%), and Microsoft’s Copilot (41.5%) – a later 

version of Bing Chat. The superior performance of LMMs on text-based tasks may not be 

solely attributed to model size or recentness. Rather, their multimodal training process 

likely contributes to more comprehensive understanding and adaptive reasoning by 

enabling the development of broader and more flexible conceptual frameworks – an 

advantage in acquiring diverse domain-specific knowledge in highly specialized fields such 

as OMFR.  

Despite notable advances in text-based reasoning, both LMM chatbots exhibited 

substantial limitations in image-based interpretation. This finding indicates considerable 

difficulty in recognizing key visual patterns essential for accurate radiographic assessment. 

Particularly low accuracy was observed in the identification of normal anatomical 
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structures. For example, in a panoramic radiograph where the ear lobe was to be identified 

(Fig. 5) – a task correctly answered by 93.1% of students – ChatGPT-4o misidentified it as 

the styloid process, while Gemini 2.0 Flash answered the mandibular condyle. In another 

item requiring localization of a missing floor of the maxillary sinus (Fig. 6), students 

achieved a high accuracy of 87.1%, while ChatGPT-4o and Gemini 2.0 Flash incorrectly 

responded with “mandibular canal” and “mandibular condyle,” respectively. One possible 

explanation lies in the nature of the training data used for LMMs. While these models are 

pre-trained on large-scale image-text pairs (Li et al., 2024; Qi et al., 2020), much of the 

data emphasizes general visual understanding rather than the subtle identification of normal 

anatomical landmarks. Furthermore, many medical or dental image datasets used during 

pre-training are heavily weighted toward pathological cases, potentially biasing model 

attention away from normal structures. 

The diagnostic performance on radiographic images was also limited. In a case that 

presented multiple diagnostic cues – including posterior-anterior and lateral cephalograph 

alongside a panoramic radiograph – students unanimously (100.0%) identified the 

condition as cleidocranial dysplasia (Fig. 7). ChatGPT-4o, however, incorrectly suggested 

a possibility of rickets, failing to recognize key radiographic features such as delayed 

closure of cranial sutures and fontanelles, underdeveloped maxilla, prolonged retention of 

primary teeth, and multiple unerupted supernumerary teeth. In another example, a 

panoramic radiograph showing a right mandibular condyle fracture (Fig. 8) was correctly 

interpreted by 98.4% of students. Both LMM chatbots, however, failed to localize the lesion, 

instead misidentifying it as a left mandibular body fracture, also overlooking the reversed 

left-right orientation typical of dental radiographic images. These findings suggest that 

current LMMs, despite their multimodal capabilities, lack the domain-specific radiographic 

interpretive accuracy required for clinical application in specialized fields such as OMFR. 

Analysis results by question type, all LLM chatbots consistently demonstrated higher 

accuracy on SAQs than on MCQs. This trend may be attributed to the relative simplicity 

of the SAQs used in this study, which required concise, keyword-based responses, in 
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contrast to MCQs that demanded comprehensive evaluation of all given options and a 

deeper understanding of OMFR knowledge. However, this pattern was reversed in the LLM 

chatbots, which exhibited higher accuracy on MCQs than on SAQs. These findings are 

consistent with those of a previous study by Mine et al. (2025), which reported similar 

MCQ accuracy scores in the OMFR domain – 66.7% for ChatGPT-4o and 50.0% for 

Gemini 2.0 Flash – although image-based SAQs were not included in their evaluation 

(Mine et al., 2025). This suggests that the enhanced architecture of LMMs may better 

support structured decision-making tasks such as MCQs, despite their continued limitations 

in generating accurate responses for complex dental imaging interpretation.  

Response consistency was generally high in text-based and multiple-choice formats 

but decreased in image-based and short-answer tasks. These discrepancies may stem from 

fundamental structural differences between response types. MCQs in this study required 

selecting a single answer from a fixed set of choices while SAQs allow open-ended 

responses, resulting in broader variability in phrasing. The stochastic nature of 

autoregressive language models, which generate text by sampling from probability 

distributions, may further contribute to inconsistencies in complex image-based tasks (Kim 

et al., 2024). Despite the use of a rule-based normalization process to address minor lexical 

variation, agreement remained low – especially in image-based items, where models 

frequently generated entirely different interpretations. For instance, when interpreting 

panoramic image of a patient with “hyperparathyroidism” (Fig. 9), the chatbots generated 

a wide range of diagnoses, including osteogenesis imperfecta, nevoid basal cell carcinoma 

syndrome, cleidocranial dysplasia. Although only the first responses were used for 

accuracy scoring in this study, such variability underscores an important concern: even 

advanced LMMs may generate inconsistent outputs for the same task. This emphasizes that 

blind reliance on chatbot outputs, especially by individuals without domain expertise, may 

lead to serious errors in judgment. 

The hallucination analysis demonstrated that both LMM chatbots generally produced 

responses of acceptable quality when evaluated by expert radiologists, particularly for text-
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based questions. Performance was consistently higher in multiple-choice formats than in 

short-answer formats, and for text-only items compared to image-based items. But 

hallucination increased substantially in image-based tasks, particularly for SAQs. These 

findings suggest that the integration of visual information introduces additional complexity 

that can compromise the models' ability to generate well-grounded, evidence-based 

responses (Sun et al., 2023). In clinical applications where multimodal input is essential, 

such as radiologic diagnosis, this vulnerability remains a critical challenge. Ongoing 

improvements in multimodal alignment, domain-specific training, and reasoning 

capabilities will likely be necessary to mitigate hallucination risks in complex diagnostic 

contexts. 

ZS-CoT prompting was applied to evaluate whether structured reasoning could 

improve chatbot performance by inserting a simple instruction in Korean (“Let’s think step 

by step”) at the beginning of each query. Although this technique has previously 

demonstrated substantial improvements in accuracy across various reasoning tasks in 

natural language processing (NLP) (Kojima et al., 2022), it failed to make meaningful 

improvements not only on text-based tasks where chatbots already perform well, but also 

on image interpretation, where chatbots struggle significantly. These results suggest that 

the benefits of ZS-CoT prompting in facilitating robust reasoning effects may not 

generalize to highly domain-specific fields such as OMFR. Many OMFR tasks require 

factual recall rather than multi-step reasoning, thereby limiting the utility of stepwise 

prompting strategies. Similar findings have been reported in prior biomedical (Nagar et al., 

2024) and oncology (Chen et al., 2024) studies, highlighting the need for further research 

to establish the reliability of prompt engineering approaches in enhancing the accuracy of 

multimodal chatbots. 

This study has several limitations. First, the evaluation was conducted using general-

purpose chatbot interfaces without API-based access or additional domain-specific training. 

It remains unclear to what extent the models have been exposed to OMFR content during 

their pretraining, limiting the ability to interpret the source and depth of their domain 
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knowledge. Second, all experiments were performed using default settings without any 

adjustment of parameters such as temperature, response length, or prompt structure. The 

performance observed in this study may therefore not fully reflect the chatbots’ potential 

under optimized conditions.  
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Fig. 5 Panoramic radiograph presented as an example of identifying a normal anatomical 

structure (ear lobe). 

 

 

Fig. 6 Panoramic radiograph presented as an example of identifying a normal anatomical 

structure (missing floor of the maxillary sinus). 
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Fig. 7 Various radiographs presented as an example requiring radiographic diagnosis 

(cleidocranial dysplasia).  

 

 

Fig. 8 Panoramic radiograph presented as an example of identifying a fracture of an 

anatomical structure (condylar head). 
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Fig. 9 Panoramic radiographs presented as an example requiring radiographic diagnosis 

(hyperparathyroidism). 
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5. CONCLUSION 

 

This is the first study to present a comprehensive evaluation comparing general-

purpose chatbot performance to actual student outcomes in the OMFR domain using a 

multidimensional dataset encompassing both text- and image-based questions. Additionally, 

this study provides a longitudinal assessment of performance progression from LLM to 

LMM chatbots, offering insight into the evolving capabilities of AI chatbot within a 

specialized dental domain. 

The performance of four LLM and two LMM chatbots was evaluated using text- and 

image-based examination questions covering six educational content categories and two 

question types. Key performance indicators–including accuracy, hallucination, ZS-CoT 

prompting, and response consistency–were systematically analyzed to provide a 

comprehensive assessment of chatbot performance in this highly specialized dental domain. 

LMM chatbots demonstrated superior accuracy and response quality compared to 

LLM chatbots in text-based tasks, and outperformed students in some areas. However, their 

performance remained limited in image-based diagnostic tasks. A high degree of 

inconsistency and hallucination was observed, particularly in complex visual interpretation 

and short-answer formats. ZS-CoT did not result in meaningful improvements in response 

accuracy. 

Future research should include datasets with diverse clinical images and case 

scenarios to better evaluate multimodal reasoning. Model customization, including 

hyperparameter tuning and advanced prompting, may help reduce hallucination and 

improve performance in complex diagnostic tasks. These efforts are essential for the safe 

and effective application of AI chatbots in dental education and clinical practice. 
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ABSTRACT IN KOREAN 

 

텍스트 및 이미지 기반 문제를 활용한 거대 언어 모델 및 거대 

다중모달 모델 인공지능 챗봇의 성능 평가 

 

 

목적: 본 연구는 영상치의학에서 범용 거대 언어 모델 및 거대 다중모달 모델 

기반 인공지능 챗봇의 성능을 평가하여 실제 치과대학생의 성적과 비교하고, 거대 

언어 모델에서 거대 다중모달 모델 챗봇으로의 종단적 성능 변화를 분석함으로써 

다차원 평가를 수행하는 것을 목표로 한다. 

재료 및 방법: 국내 치과대학의 영상치의학 교육과정에서 추출한 90 개의 텍스트 

및 영상 기반 시험 문항을 6 개의 교육 내용과 2 개의 문제 유형으로 분류하였다. 

4 개의 거대 언어 모델 챗봇(ChatGPT, ChatGPT Plus, Bard, Bing Chat)은 각 문항에 

대해 1 회, 2 개의 거대 다중모달 모델 챗봇(ChatGPT-4o, Gemini 2.0 Flash)은 

10회씩 응답을 수집하였다. 모든 챗봇의 첫 회차 응답을 기준으로 정확도를 산출하여 

실제 치과대학생 성적과 비교하였다.  거대 다중모달 모델 챗봇에 한하여 10 회 반복 

응답의 일관성을 Fleiss’ kappa 계수로 평가하였고, 2 명의 영상치의학 전문의가 

Global Quality Scales 지표의 5 점 척도에 따라 환각 정도를 평가하여 평균 및 

표준편차를 계산하였다. 마지막으로는 단계별 추론을 유도하는 제로샷 생각의 사슬 

프롬프트의 적용 효과를 확인하였다. 

결과: 거대 다중모달 모델 챗봇은 텍스트 기반의 문항에서 거대 언어 모델 

챗봇보다 높은 정확도를 보였고, 일부 영역에서는 치과대학생의 성적을 상회하는 

성과를 나타냈다. 그러나 영상 기반 문제에서는 매우 제한적인 성능을 보였으며, 

복잡한 영상 해석 및 단답형 문항에서 높은 수준의 변동성과 환각이 관찰되었다. 

제로샷 생각의 사슬 프롬프트 적용은 챗봇의 정확도 향상에 유의미한 효과를 보이지 

않았다. 
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결론: 본 연구는 텍스트와 이미지를 모두 포함하는 영상치의학 관련 시험 문항을 

활용하여 챗봇의 성능을 학생 성적과 비교하는 동시에 거대 언어 모델 챗봇에서 거대 

다중모달 모델 챗봇으로의 종단적 성능 변화를 조사한 최초의 연구로서, 현시점에서 

범용성 인공지능 챗봇의 역량과 한계를 규명하는 데에 시의적절한 통찰을 제공한다. 

향후 연구에서 다양한 임상 영상과 사례를 포함한 특화된 데이터셋을 활용하고, 환각 

감소를 위해 모델 맞춤화와 고급 프롬프트 전략을 적용한다면 학생 및 환자 교육과 

임상 실무에서 인공지능 챗봇을 보다 안전하고 효과적으로 활용할 수 있을 것이다. 
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