creative
comimons

C O M O N S
& X EAlI-HI el Xl 2.0 Gigel=
Ol OtcHe =2 E 2= FR0l 86tH AFSA
o Ol MHE=E= SN, HE, 8E, A, SH & &5 = AsLIC

XS Mok ELICH

MNETEAl Fots BHEHNE HEAIGHHOF SLICH

Higel. M5t= 0 &

o Fot=, 0l MEZ2 THOIZE0ILE B2 H, 0l HAS0 B2 0|8
£ 2ok LIEFLH O OF 8 LICEH
o HEZXNZREH EX2 oItE O 0lelet xAdE=2 HEX EsLIT

AEAH OHE oISt Aele 212 WS0ll 26t g&
71 2f(Legal Code)E OloiotI| &H

olx2 0 Ed=t

Disclaimer =1

ction

Colle


http://creativecommons.org/licenses/by-nc-nd/2.0/kr/legalcode
http://creativecommons.org/licenses/by-nc-nd/2.0/kr/

Performance evaluation of text- and image-based
guestions by large language model and large
multimodal model chatbots in oral and
maxillofacial radiology

Jeong, Hui

Department of Dentistry
Graduate School

Yonsei University



Performance evaluation of text- and image-based
guestions by large language model and large multimodal

model chatbots in oral and maxillofacial radiology

Advisor Han, Sang-Sun

A Dissertation Submitted
to the Department of Dentistry
and the Committee on Graduate School
of Yonsei University in Partial Fulfillment of the
Requirements for the Degree of

Doctor of philosophy in Dental Science

Jeong, Hui

June 2025



Performance evaluation of text- and image-based questions
by large language model and large multimodal model chatbots
in oral and maxillofacial radiology

This certifies that the Dissertation
of Jeong, Hui is approved

Committee Chair Lee, Chena

Committee Member Han, Sang-Sun

Committee Member Jeon, Kug Jin

Committee Member Choi, Yoon Joo

Committee Member Jo, Gyu-Dong

Department of Dentistry
Graduate School
Yonsei University

June 2025



3 A wpow

T

°
pal

TC =

RIS

p
=

A Ae @A B4S =9 o

AL,

=

watel 2

= 7)o

o
R

o= E7kA

[e)

d 43

A4

wha 5 99l

eN
=
9

9134

St
S

)

S

-

4gE wop

AArtolel A o

]_

A

.

=

A
=

e

Sk
Sk

srell AAARE

ATHO T ol nmal shFoln

U

B

el
%

e WA Aok
i, A Al A w

o
Ry

X

iy
A

T AAAEA AAF=H YT
S 19 4

o

“, -

1=
T2 Aol 3ol FMA oF 5 o] A Ado] ¢

]

o

= =
=3

-

A, obel A4

{|m
L

ikl

59

il

)



AMORE 2 A7k AU AT Agolsh FgololA WAL vhe-g A3
v, Azstud Akd AARE 298 GE AT oMYle 249 3

B YR 27 2 A7l sl $E Aol T 94
\/]
“

A ZAEFUL ARl 525%, vk o] £45
del 3

wiatel A2l A AHHE BES) Wl FA Ry, AR o]
dgo] mE 2ol 959 AUt HeUth ANA FES oA P& F 5
QLo AR AR SR AL Ba3b 2o o JwE FA
AREET BAgEoR A9S oA gl Agehs dHeARE 2e

7]
HAT s ol A £ wFs Fordu. 259 Aol e = ER
RE 4

20254 6€ A= &



TABLE OF CONTENTS

LIST OF FIGURES  ceeeeeeesssmomeeeeeesessisssssssssssssssss 11 siss 51 iii
LIST OF TABLES e isssssssssssssssse b8 Vi
ABSTRACT IN ENGLISH ~ cooreeeeeeeeeeesssssssssssssss st ssssssssssss s sssssssss s s v
1. INTRODUGTION  ereeeeesemeessressresimeesteeesseessseesstesssseessosessnses st soee et soees oot 1
2. MATERIALS AND METHOIDS ~ coooeesmssssssssssisssssssessssssss s 6
2.1. Question preparation and CategOTization s 7
2.2. Educational background of dental Students s 9
2.3. Model descriptions and input Strategies s 10
2.3.1. Large language model chatbots s 10
2.3.2. Large multimodal model chatbots s 11
2.3.3. Prompt formatting and input strategies 12
2.4, Data GnalySis s s s 15
DAL ACCUTACY oo 15
2,42, RESPONSE COMSISIEIOY oo 16
D43 HallUCINALION  weeesseossreeeemssssssssssssss s 17
2.4.4. Zero-shot Chain-0f-thOUGR ittt 19
3L RESULTS  ceeeeeesessommeeeeeeeeeesssssssssss 00810 S 20
BULLAGGUIACY oo 20
3.1.1. Accuracy based on educational CONtENt e 21
3.1.2. Accuracy based ON QUESHON type st 24
3.2, RESPONSE COMSISIEMCY oo 27
3.2.1. Response consistency based on educational content =~ e 28



3.2.2. Response consistency based on quUEStion type e 30

33 HAIUCINALION  eeroeerseresmresmrssmossoes oottt sttt oottt oot oo 39
3.3.1. Hallucination evaluation based on educational content =~ e 33
3.3.2. Hallucination evaluation based on question type =~ s 35

34. ZerO'ShOt Chain-of—thought ................................................................................................... 8 7

3.4.1. Changes in accuracy rates after applying zero-shot chain-of-thought
based on educational CONLEIIL rreereesererm e 38

3.4.2. Changes in accuracy rates after applying zero-shot chain-of-thought

based 0N qUESHION tyPe e 40
4. DISCUSSION  cooreommrerssmeessomeesstseees sttt soeees oottt oo oo s e 49
5 CONCLUSION oottt st sseess sttt e e 51
REFERENCES  cooooeroosmeoessimeesssseeest ettt mee oot et oo oo 59
ABSTRACT IN KOREAN  eooeeoemeresssmeossssmeessssseesstmeesssmeessssmeesstoeees sttt 57



LIST OF FIGURES

<Fig.

<Fig.

<Fig.

<Fig.

<Fig.

<Fig.

<Fig.

<Fig.

<Fig.

1> OVerall WOI‘kﬂOW Of thlS Study ..........................................................................

2> An example Of a ChatbOt response ...................................................................

3> Accuracy comparison between LLM and LMM chatbots

across educational content categories in text-only questions =~ e

4> Accuracy comparison between LLM and LMM chatbots

across educational content categories in text-only questions

5> Panoramic radiograph presented as an example of identifying

a normal anatomical structure (ear lobe) .......................................................

6> Panoramic radiograph presented as an example of identifying
a normal anatomical structure (missing floor of the maxillary sinus)

7> Various radiographs presented as an example requiring

radiographic diagnosis (cleidocranial dysplasia) s

8> Panoramic radiograph presented as an example of identifying

a fracture of an anatomical structure (condylar head) e

9> Panoramic radiographs presented as an example requiring

radiographic diagnosis (hyperparathyroidism) s



LIST OF TABLES

<Table 1> Checklist of evaluation strategies and input conditions e 13
<Table 2> Modified Global Quality Scales (GQS) s 17
<Table 3> Accuracy rates and comparison with

reference standard (dental student SCOTEs) oo 20
<Table 4> Accuracy rates based on educational content and

comparison with reference standard (dental student scores) 22

<Table 5> Accuracy rates based on question type and

comparison with reference standard (dental student scores) 25
<Table 6> Response consistency evaluation and interpretation e 27
<Table 7> Response consistency evaluation and interpretation
based on educational CONEEIIL  rrerreeereseser et 29
<Table 8> Response consistency evaluation and interpretation
DASEd ON QUESHION TyPe  wrvrsrsmssssssesessses e 31
<Table 9> Hallucination evaluation and interpretation. s 32
<Table 10> Hallucination evaluation and interpretation
based on educational CONLEIL  voreerermesese et 34
<Table 11> Hallucination evaluation and interpretation
based ON QUESHION Ty Pe s 36
<Table 12> Accuracy changes with zero-shot chain-of-thought and
comparison with reference standard (dental student scores). e 37
<Table 13> Accuracy changes with zero-shot chain-of-thought based on educational
content, and comparison with reference standard (dental student scores) ~ 39
<Table 14> Accuracy changes with zero-shot chain-of-thought based on question
type, and comparison with reference standard (dental student scores) - 41



ABSTRACT

Performance evaluation of text- and image-based questions
by large language model and large multimodal model chatbots
in oral and maxillofacial radiology

Purpose: This study aimed to conduct a comprehensive evaluation of general-purpose
large language model (LLM) and large multimodal model (LMM) chatbots in oral and
maxillofacial radiology (OMFR) by comparing their performance with dental students, and

assessing performance changes from LLM to LMM chatbots.

Materials and Methods: A total of 90 text- and image-based examination questions
were extracted from OMFR curriculum in a Korean dental school and categorized into six
educational content categories and two question types. Four LLM chatbots (ChatGPT,
ChatGPT Plus, Bard, Bing Chat) generated a single response per question, while two LMM
chatbots (ChatGPT-40, Gemini 2.0 Flash) produced ten responses per item. Accuracy was
assessed using the first response from each chatbot and compared to student scores. For
LMM chatbots, response consistency across repeated outputs was analyzed using Fleiss’
kappa coefficient. Hallucination was evaluated by two oral and maxillofacial radiologists
using a five-point Global Quality Scales, with mean and standard deviation, and the effect

of zero-shot chain-of-thought (ZS-CoT) prompting was examined.

Results: LMM chatbots demonstrated higher accuracy than LLM chatbots on text-
based items and outperformed dental students in certain domains. However, their
performance remained limited in image-based diagnostic tasks, with frequent variability
and hallucinations observed in complex image interpretation and short-answer formats. ZS-

CoT prompting did not produce meaningful improvement in accuracy.
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Conclusions: This is the first study to compare chatbot performance with student
scores using an OMFR questions that includes both textual and image components, while
also examining longitudinal performance changes from LLM to LMM chatbots. These
findings offer timely insight into the current strengths and limitations of general-purpose
Al chatbots. Future work incorporating more diverse clinical images and case scenarios,
combined with model customization and advanced prompting strategies, may help enable
safer and more effective application of Al chatbots in dental education, patient

communication, and clinical practice.

Key words : Oral and maxillofacial radiology, Large language model, Large multimodal model,
Artificial intelligence, Chatbot, Performance evaluation
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1. INTRODUCTION

Recent advances in artificial intelligence (Al) have been significantly accelerated by
the emergence of large language models (LLMs), which are sophisticated systems that use
mathematical and statistical methods to understand and generate human-like language
(Shanahan, 2024). LLMs learn linguistic patterns and contextual relationships across a
wide range of topics by analyzing massive volumes of text data sourced from various
literature, academic writing, and online content (Thirunavukarasu et al., 2023). Given an
input prompt, an LLM generates coherent and contextually appropriate responses by
predicting the most probable next word based on learned probability distributions. These
models are built upon the transformer architecture, first introduced by Vaswani et al. in
2017, which replaces traditional recurrence and convolutional layers with a novel attention
mechanism known as multi-headed self-attention. This design enables the model to capture
dependencies between tokens (i.e., the smallest units of text used by the model to process
language) regardless of their relative distance within the input or output sequence (Vaswani
et al., 2017). These foundational advancements have led to the development of highly
influential LLMs, such as GPT (Generative Pre-trained Transformer) (Floridi & Chiriatti,
2020; Radford, Narasimhan, Salimans, & Sutskever, 2018) and BERT (Bidirectional
Encoder Representations from Transformers) (Devlin, Chang, Lee, & Toutanova, 2019).
Along with their subsequent iterations, LLMs have demonstrated exceptional performance
of natural language processing (NLP) tasks, including summarization, translation, question

answering, and logical reasoning.

The launch of ChatGPT — a conversational chatbot powered by the GPT-3.5 model —
introduced to the general public in November 2022 and marked a major paradigm shift in
the accessibility and application of generative Al: while it took Facebook 10 months to
reach one million users, ChatGPT achieved this milestone in just five days. In addition,

ChatGPT’s unexpected success in passing the United States Medical Licensing



Examination (USMLE) without any domain-specific training captured global attention in
January 2023 (Kung et al., 2023). In February 2023, OpenAl released ChatGPT Plus based
on GPT-4 (Achiam et al., 2023), which provide improved response speed and enhanced
performance through more extensive and up-to-date training data. In line with this trend,
Microsoft introduced Bing Chat in February 2023, leveraging Prometheus model, built
upon GPT-4 and integrating real-time web search capabilities. Google followed in March
2023 with Bard, initially based on its Pathways Language Model (PaLM) (Chowdhery et
al., 2023) and the Language Model for Dialogue Applications (LaMDA) architecture
(Thoppilan et al., 2022).

Large multimodal models (LMM:s) are designed to process and integrate information
from multiple modalities — including text, images, audio, and video — within a unified
framework (Huang, Yan, Li, & Peng, 2024). They are the next evolutionary step of LLM,
which only works with text input and output. This shift reflects an ambition to create Al
systems that perceive and reason more like humans by simultaneously analyzing linguistic
and visual cues. LMMs retain transformer-based architecture of their predecessors but are
further trained on large-scale image-text pairs or multimodal datasets (Li et al., 2024; Qi et
al., 2020). Notable milestones include Google’s Gemini series (Team et al., 2023), which
began incorporating LMM capabilities with the release of Gemini 1.0 in December 2023.
Another key advancement was OpenAl’s GPT-40 (with "o” standing for “omni”) launched
in May 2024, which introduced a truly unified multimodal model capable of natively
processing text, images, video, and audio within a single architecture (Islam & Moushi,
2024). Furthermore, these LMMs adopt mixture-of-experts (MoE) models — an architecture
that has been widely applied in tasks such as classification, clustering, and regression
(Nguyen & Chamroukhi, 2018). MoE selectively activates only the most relevant expert
subnetworks per each query, significantly reducing computational overhead while

maintaining high-quality responses in complex multimodal tasks (Kim, Lee, & Kim, 2024).

Response consistency is an important factor in evaluating chatbot performance. LLMs

and LMMs are inherently probabilistic in nature. Rather than applying fixed rules, these
2



models generate responses by sampling from probability distributions over possible tokens
(Kim et al., 2024). As a result, identical prompts submitted at different times can yield
varying outputs, even within the same version of model. In practice, medical researchers
often submit the same prompts multiple times — typically three to five iterations — to assess
the consistency of model outputs (Kuscu, Pamuk, Siitay Siislii, & Hosal, 2023; Wu et al.,
2024).

Hallucination refers to the generation of information that appears contextually
appropriate but is factually incorrect. Such inaccuracies may stem from imbalanced or
incomplete training data, restricted access to up-to-date information, or intrinsic limitations
in generating responses that are both logically accurate and contextually appropriate
(Rawte, Sheth, & Das, 2023). Especially, recent study reported that LMMs may generate
severe ungrounded or inaccurate outputs that are not properly aligned with the provided
visual context. This issue is often attributed to the imbalance in the amount and quality of
multimodal training data compared to text data (Sun et al., 2023). The problem becomes
more prominent in tasks that require precise integration of image and text, such as complex

image reasoning or medical image interpretation.

Researchers have explored prompt engineering as a practical method to enhance the
performance of LLMs and LMMs. This approach guides the model toward producing more
accurate and reliable responses — for example, by explicitly specifying the model’s assumed
role (e.g., “Answer as if you were an oral and maxillofacial radiologist with 20 years of
experience”) or by providing clear and detailed instructions. Several structured prompt
engineering strategies have also been developed to enhance model reasoning. A common
classification includes zero-shot, one-shot, and few-shot prompting, depending on how
many examples are provided in the prompt to guide the model’s understanding of the
expected context and response structure. Generally, the more examples provided, the better
the model’s performance (Brown et al., 2020). Another widely studied method is the chain-
of-thought (CoT) prompting strategy, which encourages the model to reason step by step

through explicit instructions that prompt it to articulate its thought process.

3



Zero-shot chain-of-thought (ZS-CoT), proposed by Kojima et al. in 2022, is a prompt
engineering technique that improves the reasoning of chatbots. (Kojima, Gu, Reid, Matsuo,
& Iwasawa, 2022). Simply prepending the phrase “Let’s think step by step” to a prompt
has been shown to dramatically enhance performance in reasoning tasks. For example, in
arithmetic problems, model accuracy improved from 17.7% to 78.7% using ZS-CoT
without the need for any examples. Although ZS-CoT did not outperform few-shot CoT in
the previous study (Kojima et al., 2022), it offers a compelling balance between
effectiveness and simplicity. Given that few-shot CoT often requires careful task alignment
and manually designed examples, ZS-CoT remains a highly efficient and practical strategy
for improving model reasoning with minimal prompt engineering. However, its application
in dentistry remains relatively underexplored, highlighting the need for further

investigation in domain-specific contexts.

LLMs and LMMs are now widely accessible to the public through general-purpose,
web-based chatbot platforms. As their educational and clinical applications continue to
expand, there is growing interest within the dental community regarding their potential
utility. In dental education, chatbots can function as interactive platforms for clinical
practice simulation, knowledge reinforcement, and personalized competency assessment.
By enabling continuous access to educational content and delivering immediate, adaptive
feedback, they contribute to enhancing students’ learning processes (Fang et al., 2024).
Clinically, chatbots hold potential to improve patient education by offering tailored health
information, facilitating remote consultations, and supporting multilingual communication,
thereby promoting better patient comprehension and engagement in care (Helvacioglu-
Yigit et al., 2025). Oral and maxillofacial radiology (OMFR), which involves both text-
based and image-based tasks, offers opportunities for chatbots to support experts by
addressing language-related challenges, assisting in the generation and standardization of
radiology reports, and aiding in the interpretation of dental radiographic images for the
diagnosis of various head and neck conditions (Kim et al., 2024). To ensure their safe and

effective integration into these domains, systemic evaluation of their current performance



is essential.

Several recent studies have attempted to evaluate the performance of publicly
available LLM and/or LMM chatbots using OMFR examination questions (Mine et al.,
2025; Tassoker, 2025; Uehara et al., 2025). However, studies were limited by small datasets
with fewer than 50 questions, focused exclusively on multiple-choice question formats, or
primarily utilized text-only input. In the study by Mine et al., image-based questions were
included but were limited to only six items (Mine et al., 2025). In addition, previous studies
primarily assessed chatbot accuracy or reliability without conduction expert-based
hallucination evaluation or applying prompt engineering strategies for performance

enhancement (Mine et al., 2025; Tassoker, 2025; Uchara et al., 2025).

This study aimed to conduct a comprehensive evaluation of general-purpose LLM and
LMM chatbots across four key dimensions — accuracy, response consistency, hallucination,
and the effect of ZS-CoT — using OMFR questions that incorporate both text and image-
based items. It offers timely insight into both the current capabilities and critical limitations
of chatbots in OMFR, and contributes a novel methodological perspective for future
research and practical applications in complex clinical fields. It also provides a longitudinal
assessment of the evolving capabilities of Al chatbots in domain-specific fields by

presenting performance changes from LLM to LMM chatbots.



2. MATERIALS AND METHODS

The overall workflow is presented in Fig. 1.

90 OMFR questions

Educational content Question type
Text-only (n=52)
asic knowledge maging and equipment  Image interpretation {plescha
QUESTION Basi led imagl d equi i . ' Mul:z:aes-gg:me
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Fig. 1 Overall workflow of this study.



2.1. Question preparation and categorization

The study utilized a total of 90 examination questions from the oral and maxillofacial
radiology (OMFR) curriculum at Yonsei University College of Dentistry. The questions
were selected from mid- and end-of-semester examinations administered in April and June
2023 and were developed by experienced oral and maxillofacial radiologists. All questions
were originally written in Korean, the native language of the students. Essay-format

questions that lacked objective scoring criteria were excluded from the question set.

The questions were categorized into two groups and further subdivided by specific

educational content as follows:

i. Text-only questions (n=52): These items did not contain any visual elements
and consisted entirely of text.

* Basic knowledge (n=16): Understanding of X-ray generation and
measurement units, radiation biology, exposure and protection principles.

* Imaging and equipment (n=27): Understanding of panoramic radiography,
periapical radiography, cone-beam computed tomography (CBCT),
magnetic resonance imaging (MRI), and digital imaging systems.

*  Image interpretation (n=9): Interpretation of radiographic features associated
with cysts, trauma, fractures, soft tissue calcifications, and systemic diseases
involving the oral and maxillofacial region.

ii. Image-based questions (n=38): These items included visual elements such as
dental radiographic images, illustrations, schematic diagrams, or graphs.

*  Understanding radiographic imaging (n=11): Comprehension of digital
image characteristics (e.g., bit depth, grayscale levels, window width and
window center), identification of imaging artifacts or acquisition errors, and
schematic understanding of X-ray power supply and generation systems.

*  Normal anatomical structures (n=14): Identification of normal hard and soft



tissue anatomical structures as seen on panoramic and periapical radiography,
computed tomography (CT), and magnetic resonance imaging (MRI).

Radiographic diagnosis (n=13): Recognition of radiographic manifestations
of cysts, tumors, fractures, soft tissue calcifications, other bone diseases, and

systemic conditions on various dental radiographs.

The questions were also classified by question format:

Multiple-choice questions (MCQs; n=48): These items required to select only
one correct answer among multiple options.
Short-answer questions (SAQs; n=42): These items required a clear and

concise response that involved no inference or subjective judgment.



2.2. Educational background of dental students

A total of 120 dental students — 58 in their third-year and 62 in their fifth-year — were
enrolled in the examinations, which formed an integral component of the structured dental
curriculum. These students served as the reference group for evaluating the performance of
LLM and LMM chatbots on identical test items. Each set of examinations was
independently designed by the oral and maxillofacial radiologists leading the respective
course. As the assessments were conducted as part of routine academic instruction,
individual consent from the students or institutional review board (IRB) approval was not

required.

Third-year students received 32 hours of conventional classroom instruction,
delivered by a radiologist with 29 years of clinical and teaching experience. They were
assessed on basic knowledge, imaging and equipment, understanding radiographic imaging,
and normal anatomical structures. Fifth-year students underwent 16 hours of instruction
provided by a radiologist with 26 years of experience. Their curriculum focused on
advanced diagnostic skills, and their examination primarily covered the domains of image

interpretation and radiographic diagnosis.



2.3. Model descriptions and input strategies

2.3.1. Large language model chatbots

Four text-based large language model (LLM) chatbots — ChatGPT, ChatGPT Plus,
Bard, and Bing Chat — were evaluated using 52 text-only questions, as these models did
not support image input at the time. The assessments were conducted between July and

September 2023.

ChatGPT and ChatGPT Plus (OpenAl, San Francisco, California, USA) are based on
OpenAl’s GPT-3.5 and GPT-4 architectures, respectively. ChatGPT did not support real-
time internet access, and its responses were generated solely from pre-trained data (cutoft:
September 2021). ChatGPT Plus also relied primarily on pre-trained data (cutoff: January
2023), but real-time web access was available through the optional use of the “web

browsing” setting.

Bard (Google, Mountain view, California, USA) is built on Google’s Pathways
Language Model (PaLM) and the Language Model for Dialogue Applications (LaMDA),
and it supported real-time web access through integration with Google Search. Bing Chat
(Microsoft, Redmond, Washington, USA) is powered by Microsoft’s Prometheus model,
built upon GPT-4, and also provided real-time internet search capabilities. The training data
for Bard was current up to April 2023, and Bing Chat’s was up to March 2023 at the time

of evaluation.

10



2.3.2. Large multimodal model chatbots

Two large multimodal models (LMM) chatbots — ChatGPT-40 and Gemini 2.0 Flash
— were evaluated using all 90 questions, which included 52 text-only and 38 image-based

items. The assessments were conducted between February and March 2025.

ChatGPT-40 (OpenAl, San Francisco, California, USA) is based on the GPT-4
architecture and integrates multimodal capabilities, including text, image, and audio input.
While it includes a web browsing feature, ChatGPT-40 does not access real-time
information by default; unless the user manually enables the browsing function before
submitting a prompt, responses are generated solely from its internal knowledge base, last

updated in October 2023.

Gemini 2.0 Flash (Google DeepMind, London, England) is a lightweight variant of
the Gemini 2.0 architecture, which combines large language modeling with multimodal
pre-training. Unlike ChatGPT-40, Gemini 2.0 Flash support real-time internet access by
default through integration with Google Search. Its training data was current up to

December 2023 at the time of evaluation.

11



2.3.3. Prompt formatting and input strategies

All questions were entered into each chatbot in Korean, as they were originally
administered in the student examinations. To maintain consistency and ensure objective

evaluation, input queries were standardized across models.

All items were reformatted to require a single response. Detailed instructions such as
“Select the most accurate/inaccurate statement™ or “Write the most appropriate response”
were included, depending on the question type. For SAQs requiring the identification of
specific term described in a statement, a blank space was inserted within the sentence to

prompt the chatbot to generate a direct and contextually appropriate answer.

In the LLM chatbots evaluation, a single-input strategy was employed (Lin, Chan,
Hsu, & Kao, 2024), in which each question was entered only once per model without any
rephrasing, repetition, or follow-up attempts. This approach was intended to mirror the
conditions under which students completed their examinations, ensuring a fair and realistic

comparison between human and model performance.

For LMM chatbots, each question was submitted ten times in independent chat
sessions to evaluate response consistency, considering the potential variability of
multimodal processing. However, in order to evaluate response accuracy under conditions
consistent with the LLM protocol, only the first response of LMM chatbots was used for

scoring.

To enhance transparency and methodological rigor, this study referenced the
MInimum reporting items for CLear Evaluation of Accuracy Reports of Large Language
Models in healthcare (MI-CLEAR-LLM) checklist (Park, Suh, Lee, Kahn Jr, & Moy, 2024).

A detailed account of how each checklist item was addressed is provided in Table 1.

12



Table 1. Checklist of evaluation strategies and input conditions (Park et al., 2024).

ChecKlist item

Application in this study

Handling of stochasticity

Number of query attempts

Response method and

rationale

synthesis

Response consistency analysis

Technical parameter settings

One attempt per question for LLM
chatbots; ten independent attempts for
LMM chatbots.

To mirror real student testing
conditions, only the first response
generated by the model was used for

accuracy evaluation.

Response consistency was assessed by
analyzing the agreement among ten
responses for each question.

No hyperparameters (e.g.,
temperature) were modified; default
settings were used.

Exact prompt wording and syntax

Prompt formatting details

Prompts maintained consistent and
precise use of spelling, symbols,
punctuation, and spacing.

Prompt application procedure

Query session structure

Query input sequence

13

Multiple  items  were  entered
sequentially within a single chat

session per model.

Items were submitted one at a time
over multiple chat rounds to isolate
responses.



Prompt testing and optimization

Prompt development steps

Prompt wording rationale

All items included a directive to select
the most appropriate responses; SAQs
were further reformatted with blank
spaces to elicit concise answers.

Terminology was drawn from

standard oral and maxillofacial

radiology  textbooks to  reflect

academic appropriateness.

Dataset independence

Use of test data in model training or
prompt tuning

Data source URL disclosure

None of the items were used in the
training or prompt tuning of any
chatbot models.

Not applicable.

14

LLM, large language model; LMM, large multimodal model; SAQ, short-answer question.



2.4. Data analysis

2.4.1. Accuracy

Accuracy was assessed using a single response from each LLM chatbot and the first
of ten responses from each LMM chatbot. Accuracy was calculated as the percentage of
correct responses out of the total number of questions. Analyses were conducted across
three dimensions — overall performance, educational content category, and question type —

using student scores as a reference standard for comparison.

To ensure consistency and objectivity in the evaluation of both chatbot-generated and
student responses, test items were independently developed by course instructors and
thoroughly reviewed through three iterative rounds to minimize potential grading
inconsistencies. MCQ responses were classified as either correct of incorrect to eliminate
evaluator bias. SAQs were designed to elicit concise, fact-based answers requiring the
identification of specific key terms rather than interpretive reasoning, thereby minimizing
the need for subjective judgment. Any response that deviated from the reference answer in

format or spelling was marked as incorrect.
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2.4.2. Response consistency

Response consistency was assessed for LMM chatbots due to the inherent variability
of multimodal input processing. Each question was submitted ten times in separate chat
sessions, and response set was considered consistent if the responses were identical in
content, regardless of correctness. For short-answer responses, a rule-based normalization
process was applied prior to comparison to account for minor lexical variations that
retained equivalent meaning. Expressions with negligible differences — such as spacing,
inflectional suffixes, or commonly interchangeable terminology — were considered

equivalent and treated as consistent responses during this assessment.

Response consistency was evaluated by calculating the mean percentage agreement
across ten repeated outputs. To quantify agreement beyond chance, Fleiss’ kappa
coefficient was calculated using SPSS software (version 26.0; IBM Corp., Armonk, NY,
USA), with a two-tailed significance level set at 0.05.

16



2.4.3. Hallucination

LMM chatbots, which are more susceptible to hallucinations due to their multimodal
nature, were evaluated based on the first response out of ten generated for each question,
in accordance with the protocol used for accuracy evaluation. Two oral and maxillofacial
radiologists who had administered the test questions independently rated the responses
using the modified Global Quality Scales (GQS) (Bernard et al., 2007), a five-point scale
ranging from 1 (poor) to 5 (excellent) (Table 2). The evaluation considered not only the
factual correctness of each answer but also the validity and appropriateness of the
underlying reasoning and supporting evidence (Fig. 2). The results were analyzed using

descriptive statistics (mean and standard deviation).

Table 2. Modified Global Quality Scales (GQS) (Bernard et al., 2007).

Score Quality Description

Disorganized flow of the information, most key information

1 P . . .
oor missing, not useful for patients or education.
Poorly structured flow of the information, many key
Generally . . .. . .
2 oor information missing, very limited usefulness for patients or
p education.

Suboptimal flow of the information, some key information
3 Moderate missing or incomplete, limited usefulness for patients or

education.

Well-organized flow or the information, most key information
4 Good . . .

included, generally useful for patients or education.

Clear and logical flow of the information, all key information
5 Excellent

included, highly useful for patients or education.
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Question

Write the most appropriate diagnosis based on the following radiographs
(A. posteroanterior cephalometric radiograph, B. lateral cephalometric
radiograph, C. panoramic radiograph).

Response (answer + supporting evidence)

Most likely diagnosis:
Rickets

Q Analysis of radiographic findings and their association with rickets

E Posteroanterior cephalometric radiograph

* The skull is abnormally wide and sutures may be prominent.

« Cranial growth abnormalities are possible.

B Lateral cephalometric radiograph

* Delayed growth of the maxilla and mandible.

« Abnormal tooth alignment, overbite or malocclusion may be observed.

* The mandible may be smaller than normal or deformed.

B Panoramic radiograph

* Multiple teeth are delayed in eruption and amelogenesis imperfecta is observed.
« Abnormal tooth alignment, overbite or malocclusion may be observed.

» Teeth are not aligned normally, and skeletal growth abnormalities are accompanied.

Fig. 2 An example of a chatbot response. Hallucination was evaluated based on both the
chatbots’ answer and the validity of its supporting evidence. (The input of the question and
the output of the response were both in Korean, but an English translation is provided in

this figure for the reader’s convenience.)
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2.4.4. Zero-shot chain-of-thought

ZS-CoT prompting was applied to evaluate whether stepwise reasoning could enhance
model performance. This strategy was implemented for the LMM chatbots across all
questions, including both text-only and image-based items. A single sentence — “Let’s think
step by step” — was added in Korean at the beginning of each standardized input query,

with no further modifications to the original formatting.

Model performance under the ZS-CoT condition was evaluated by calculating
accuracy as the percentage of correct responses out of the total number of questions. These
results were compared to the model’s original performance without ZS-CoT prompting to

assess the effectiveness of the strategy.
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3. RESULTS

3.1. Accuracy

Table 3 presents the overall accuracy rates of the six chatbots evaluated in this study.
Among the LLM chatbots, ChatGPT Plus achieved the highest accuracy (65.4%), followed
by Bing Chat (63.5%). ChatGPT and Bard recorded the lowest accuracy, both at 50.0%. In
the LMM group, ChatGPT-40 and Gemini 2.0 Flash achieved accuracy rates of 61.1% and
58.9%, respectively.

In comparison to the dental student reference scores (81.2% for text-only items and
77.7% for text- and image-based items), all chatbot models showed lower accuracy than

the students’ scores.

Table 3. Accuracy rates and comparison with reference standard (dental student scores).

Chatbot
classification Name Accuracy Ref.
ChatGPT 50.0
ChatGPT Plus 65.4
LLM 81.2
Bard 50.0
Bing Chat 63.5
ChatGPT-40 61.1
LMM 77.7
Gemini 2.0 Flash 58.9

LLM, large language model; LMM, large multimodal model; Ref., reference standard

(dental student scores).
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3.1.1. Accuracy based on educational content

Table 4 presents the accuracy of chatbot responses across different educational content
categories. Among the LLM chatbots evaluated on text-only questions, ChatGPT Plus
achieved the highest accuracy in basic knowledge (93.8%), surpassing the dental student
reference score of 78.7%. In the imaging and equipment category, Bing Chat scored 74.1%,
which was higher than other LLM chatbots but still below the student score of 83.5%. For
image interpretation, LLM chatbots showed accuracy ranging from 22.2% (ChatGPT Plus)
to 33.3% (ChatGPT, Bard, and Bing Chat).

For the LMM chatbots in text-only questions, ChatGPT-40 and Gemini 2.0 Flash
achieved accuracy rates of 86.5% and 82.7%, respectively, both exceeding the student score
of 81.2%. Gemini 2.0 Flash achieved 100.0% accuracy in the basic knowledge category.
Compared to ChatGPT Plus — an earlier model from the same developer — ChatGPT-40
showed an improvement of 25.9 percentage points in imaging and equipment, and 55.6
points in image interpretation (Fig. 3A). Similarly, Gemini 2.0 Flash outperformed its
predecessor Bard by 50.0 points in basic knowledge, 18.5 points in imaging and equipment,

and 44.5 points in image interpretation, as illustrated in Fig. 3B.

Image-based questions were evaluated using LMM chatbots only. Both ChatGPT-40 and
Gemini 2.0 Flash scored 26.3%, below the student reference score of 72.9%. The categories
of interpreting normal anatomy (ChatGPT-40: 14.3%, Gemini 2.0 Flash: 21.4%) and
radiographic diagnosis (15.4% for both chatbots) yielded the lowest accuracy rates across

all content categories.
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Table 4. Accuracy rates based on educational content and comparison with reference

standard (dental student scores).

LLM LMM
Chat  ChatGPT Bard Bing ChatGPT Gemini2.0 Ref.
GPT Plus Chat 4o Hash
Basicknowledge 3,5 938 500 688 875 100.0  78.7
(n=16)
Imaging and
equipment 66.7 63.0 55.6 74.1 88.9 74.1 83.5
Text -
(n=27)
-only
(n=52)  Image ‘?;irgeta“o“ 333 222 333 333 778 778 783
TOTAL (n=52) 50.0 65.4 50.0 63.5 86.5 82.7 81.2
Understanding
radiographic imaging - - - - 54.5 45.5 75.4
(n=11)
Interpreting
normal anatomy - - - - 14.3 214 64.8
Image _
(n=14)
-based . .
(n=38) Radiographic
diagnosis - - - - 15.4 15.4 79.5
(n=13)
TOTAL (n=38) - - - - 26.3 26.3 72.9

LLM, large language model; LMM, large multimodal model; Ref., reference standard

(dental student scores).
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Fig. 3 Accuracy comparison between LLM and LMM chatbots across educational content
categories in text-only questions. (A) Performance comparison between ChatGPT Plus
(LLM) and ChatGPT-40 (LMM), (B) Performance comparison between Bard (LLM) and
Gemini 2.0 Flash (LMM).
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3.1.2. Accuracy based on question type

Table 5 summarizes chatbot performance based on question type. For text-only
questions, all LLM chatbots showed higher accuracy on SAQs than on MCQs. ChatGPT
and ChatGPT Plus each achieved 85.7% accuracy on SAQs, while their MCQ scores were
lower at 36.8% and 57.9%, respectively. Bard showed the smallest performance gap
between the two question types, with 47.4% accuracy on MCQs and 57.1% on SAQs — a

difference of 9.7 percentage points.

Among the LMM chatbots, ChatGPT-40 achieved an accuracy of 86.8% on MCQs
and 85.7% on SAQs, representing a 28.9 percentage point increase in MCQ performance
compared to ChatGPT Plus (Fig. 4A). Gemini 2.0 Flash scored 78.9% on MCQs and 92.9%
on SAQs, showing the same pattern observed in LLM chatbots, where SAQ performance
exceeded that of MCQs. Compared to Bard, Gemini 2.0 Flash showed improvements of
31.5 points on MCQs and 35.8 points on SAQs (Fig. 4B).

In image-based questions, both ChatGPT-40 and Gemini 2.0 Flash recorded higher
accuracy on MCQs (60.0% and 50.0%, respectively) than on SAQs (14.3% and 17.9%,
respectively). Neither model exceeded the student reference scores, which were 76.7% for

MCQs and 71.5% for SAQs.
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Table 5. Accuracy rates based on question type and comparison with reference standard

(dental student scores).

LLM LMM
Chat  ChatGPT Bing  ChatGPE  Gemini2o Ref
GPT Plus Bard oy 40 Flash

Multiple-choice 36.8 57.9 474 579 86.8 789 805

question (n=38)

Text Short-answer
-only . N 85.7 85.7 57.1 78.6 85.7 92.9 82.9
question (n=14)

(n=52)
TOTAL (n=52) 50.0 65.4 50.0 63.5 86.5 82.7 81.2
Multiple-choice
question (n=10) ) - - - 60.0 50.0 76.7
Image

-based Short-answer ; ; ; ; 143 179 715

(n=38) question (n=28)

TOTAL (n=38) - - - - 26.3 263 729

LLM, large language model; LMM, large multimodal model; Ref., reference standard

(dental student scores).
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Fig. 4 Accuracy comparison between LLM and LMM chatbots across question type in text-
only questions. (A) Performance comparison between ChatGPT Plus (LLM) and ChatGPT-
40 (LMM), (B) Performance comparison between Bard (LLM) and Gemini 2.0 Flash
(LMM).
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3.2. Response consistency

Response consistency was evaluated by comparing the consistency of ten
independently generated responses for each question, regardless of correctness. Agreement
was evaluated using both percentage agreement and Fleiss’ kappa coefficient. According
to established interpretation guidelines (Landis & Koch, 1977), a kappa value between
0.00-0.20 indicates “Slight” agreement, 0.21-0.40 indicates “Fair” agreement, 0.41-0.60
indicates “Moderate” agreement, 0.61-0.80 indicates “Substantial” agreement, and values

above 0.80 represent “Almost perfect” agreement.

Overall results of the response consistency assessment are shown in Table 6.
ChatGPT-40 demonstrated a mean percentage agreement of 80.9% across ten responses per
question, and Gemini 2.0 Flash showed 81.4% of agreement. Fleiss’ kappa values were
0.709 and 0.722 for ChatGPT-40 and Gemini 2.0 Flash, respectively, both interpreted as

indicating “Substantial” agreement.

Table 6. Response consistency evaluation and interpretation.

Mean % agree K value Interp.
ChatGPT-40 80.9 0.709 Substantial
Gemini 2.0 Flash 814 0.722 Substantial

Mean % agree, average percentage of the most frequent response among ten repeated
outputs; k value, Fleiss’ kappa coefficient; Interp., interpretation of k value based on

standard agreement levels.
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3.2.1. Response consistency based on educational content

Table 7 presents the response consistency of the LMM chatbots across different
educational content categories, based on ten repeated outputs per question. For text-only
questions, ChatGPT-40 achieved mean agreement rates of 95.6% for basic knowledge,
97.0% for imaging and equipment, and 94.4% for image interpretation, with corresponding
Fleiss’ kappa values ranging from 0.863 to 0.948, all interpreted as “Almost perfect.”
Gemini 2.0 Flash showed mean agreement rates of 96.3%, 97.8%, and 95.6%, and « values
between 0.900 and 0.962, also categorized as “Almost perfect.” The overall consistency
for text-only questions was 96.2% (x = 0.926) for ChatGPT-40 and 96.9% (x = 0.945) for
Gemini 2.0 Flash.

For image-based questions, ChatGPT-40 demonstrated mean agreement ranged from
49.2% to 80.0%, and « values from 0.267 to 0.617. Gemini 2.0 Flash showed agreement
rates between 48.5% and 85.5%, and « values ranging from 0.271 to 0.719. The highest
consistency was observed in the category of understanding radiographic imaging, where
both chatbots achieved “Substantial” agreement. However, in interpreting normal anatomy
and radiographic diagnosis, agreement levels dropped to the “Fair” range. The total
consistency for image-based questions was 60.0% (k = 0.427) for ChatGPT-40 and 60.3%
(k= 0.433) for Gemini 2.0 Flash, both interpreted as “Moderate.”
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Table 7. Response consistency evaluation and interpretation based on educational content.

ChatGPT-40 Gemini 2.0 Flash
Mean Mean
% agree K value Interp. % agree K value Interp.
Basic kfowledge 956 0.910 Almost 96 3 0.928 Almost
(n=16) perfect perfect
Imaging and
equipment 970  0o94g  ‘Mmost 978 0962  ‘Mmost
Text - perfect perfect
(n=27)
-only
(n=52) Image mtirpretatlon 94 4 0.863 Almost 956 0.900 Almost
(n=9) perfect perfect
TOTAL (n=52) 962 0926  AIMOSE g9 g5 Almost
perfect perfect
Understanding
radiographic imaging 80.0 0.617 Substantial 85.5 0.719 Substantial
(n=11)
Interpreting
normal anatomy 543 0.338 Fair 514 0.304 Fair
Image _
(n=14)
-based . .
(n=38) Radiographic
diagnosis 49.2 0.267 Fair 48.5 0.271 Fair
(n=13)
TOTAL (n=38) 60.0 0.427 Moderate 60.3 0.433 Moderate

Mean % agree, average percentage of the most frequent response among ten repeated

outputs; k value, Fleiss’ kappa coefficient; Interp., interpretation of k value based on

standard agreement levels.
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3.2.2. Response consistency based on question type

Table 8 summarizes the response consistency of LMM chatbots for each question type,
based on ten repeated outputs per item. For text-only questions, ChatGPT-40 showed a
mean agreement of 96.3% for MCQs and 95.7% for SAQs, with Fleiss’ kappa values of
0.923 and 0.916, respectively. These values fall within the “Almost perfect” category of
agreement. Gemini 2.0 Flash demonstrated a mean agreement rates of 97.1% (x = 0.939)

for MCQs and 96.4% (k =0.944) for SAQs, also interpreted as “Almost perfect.”

For image-based questions, ChatGPT-40 achieved a mean agreement of 82.0% (x =
0.635) for MCQs, corresponding to “Substantial” agreement, and 52.1% (x = 0.324) for
SAQs, interpreted as “Fair.” Gemini 2.0 Flash showed 51.1% agreement (x = 0.312) for

image-based SAQs, categorized as “Fair.”
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Table 8. Response consistency evaluation and interpretation based on question type.

ChatGPT-40 Gemini 2.0 Flash
Mean Mean
% agree K value Interp. % agree K value Interp.
Multiple-choice Almost Almost
question (n=38) 963 0.923 perfect 71 0.939 perfect
Text
-only Short-answer 957 0916  AMOSL g0y gog4q  Almost
question (n=14) perfect perfect
(n=52)
TOTAL (n=52) 92 0926  Almost 969 0945  Almost
perfect perfect
Multiple-choice 82.0 0.635  Substantial  86.0 0.722  Substantial
question (n=10)
Image

-based Short-answer 52.1 0.324 Fair 51.1 0.312 Fair
(n=38) question (n=28)

TOTAL (n=38) 60.0 0.427 Moderate 60.3 0.433 Moderate

Mean % agree, average percentage of the most frequent response among ten repeated
outputs; k value, Fleiss’ kappa coefficient; Interp., interpretation of k value based on
standard agreement levels.
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3.3. Hallucination

Table 9 shows the hallucination evaluation results of the two LMM chatbots, by two oral
and maxillofacial radiologists, based on the modified Global Quality Scales (GQS)
(Bernard et al., 2007). To facilitate standardized interpretation of the GQS score, the mean
scores were categorized into five levels of quality as follows: scores between 0.00 and 1.00
were interpreted as “Poor,” 1.01 to 2.00 as “Generally poor,” 2.01 to 3.00 as “Moderate,”
3.01 to 4.00 as “Good,” and 4.01 to 5.00 as “Excellent.”

The mean GQS score was 3.37 (SD = 1.77) for ChatGPT-40 and 3.41 (SD = 1.79) for
Gemini 2.0 Flash. According to the predefined interpretation criteria, both chatbots were

classified as “Good.”

Table 9. Hallucination evaluation and interpretation.

M £ SD Interp.
ChatGPT-4o 337+1.77 Good
Gemini 2.0 Flash 341+1.79 Good

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score

values based on predefined score ranges.
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3.3.1. Hallucination evaluation based on educational content

Table 10 presents the hallucination evaluation results by educational content
categories. For text-only questions, ChatGPT-40 showed mean GQS score of 4.41 (SD =
1.16) in basic knowledge, 4.41 (SD = 1.10) in imaging and equipment, and 3.56 (SD = 1.81)
in image interpretation. Gemini 2.0 Flash recorded 4.50 (SD = 1.02), 4.22 (SD = 1.27), and
4.11 (SD = 1.76) in the respective categories. According to the predefined interpretation
criteria, both chatbots were classified as “Excellent” in basic knowledge and imaging and
equipment. In image interpretation, ChatGPT-40 was classified as “Good,” and Gemini 2.0

Flash was classified as “Excellent.”

For image-based questions, mean GQS score for ChatGPT-40 were 3.55 (SD = 1.77)
in understanding radiographic imaging, 1.82 (SD = 1.49) in interpreting normal anatomy,
and 1.31 (SD = 0.75) in radiographic diagnosis. Gemini 2.0 Flash showed corresponding
scores of 3.55 (SD = 1.81), 1.61 (SD = 1.36), and 1.69 (SD = 1.30). Both chatbots were
classified as “Good” for understanding radiographic imaging and as “Generally poor” for

both interpreting normal anatomy and radiographic diagnosis.
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Table 10. Hallucination evaluation and interpretation based on educational content.

ChatGPT-40 Gemini 2.0 Flash
M +£SD Interp. M +SD Interp.
Bas‘c(rlffl"g)ledge 441+1.16 Excellent 450 +1.02 Excellent
Imaging and
equipment 4.41+1.10 Excellent 422+1.27 Excellent
Text _
(n=27)
-only
(n=52)  Image ‘?I:fgeta“o“ 3.56 £ 1.81 Good 4114176 Excellent
TOTAL (n=52) 4.26 +1.28 Excellent 429 +1.28 Excellent
Understanding
radiographic imaging 3.55+1.77 Good 3.55+1.81 Good
(n=11)
Interpreting
normal anatomy 1.82+1.49 Generally 1.61 £1.36 Generally
Image _ poor poor
(n=14)
-based Radiographic
(n=38) diagnosis 1.31+0.75 Genzgi“y 1.69 + 1.30 Ge“gf;“y
(n=13) p p
TOTAL (n=38) 2.14 £ 1.64 Moderate 2.20 +1.69 Moderate

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score

values based on predefined score ranges.

34



3.3.2. Hallucination evaluation based on question type

Table 11 summarizes the hallucination evaluation results by question type. For text-
only MCQs, ChatGPT-40 recorded a mean score of 4.24 (SD = 1.27) and Gemini 2.0 Flash
recorded 4.13 (SD = 1.33). In text-only SAQs, the mean GQS score was 4.32 (SD = 1.34)
for ChatGPT-40 and 4.71 (SD = 1.07) for Gemini 2.0 Flash. All of these scores were

classified as “Excellent” based on the predefined interpretation criteria.

For image-based MCQs, both ChatGPT-40 and Gemini 2.0 Flash recorded identical
mean scores of 3.60, with standard deviations of 1.85 and 1.90, respectively. These were
classified as “Good.” In image-based SAQs, mean GQS score were 1.63 (SD = 1.21) for
ChatGPT-40 and 1.70 (SD = 1.31) for Gemini 2.0 Flash, corresponding to “Generally poor.”
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Table 11. Hallucination evaluation and interpretation based on question type.

ChatGPT-40 Gemini 2.0 Flash
M +£SD Interp. M +SD Interp.
Multiple-choice 424 +127 Excellent 4.13+1.33 Excellent

question (n=38)

Text Short-answer
-only . - 432+1.34 Excellent 471 £1.07 Excellent
question (n=14)

(n=52)
TOTAL (n=52) 4.26 +1.28 Excellent 4.29 +1.28 Excellent
Multiple-choice 3.60 % 1.85 Good 3.60 % 1.90 Good
question (n=10)
Image
Short-answer Generally Generally
Egi;‘;; question (n=28) 1.63+121 poor 170+ 131 poor
TOTAL (n=38) 2.14 £1.64 Moderate 2.20 £1.69 Moderate

M, mean; SD, standard deviation; Interp., interpretation of mean Global Quality Score

values based on predefined score ranges.
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3.4. Zero-shot chain-of-thought

Table 12 presents the change in accuracy for the two LMM chatbots when ZS-CoT
prompting was applied. For ChatGPT-40, accuracy decreased from 61.1% to 52.2%,
showing a performance decline of 8.9 percentage points under the ZS-CoT condition, and
Gemini 2.0 Flash showed 1.1 percentage points improvement, with accuracy increasing
from 58.9% to 60.0%. Both models underperformed compared to the reference standard

score of 77.7%.

Table 12. Accuracy changes with zero-shot chain-of-thought and comparison with

reference standard (dental student scores).

Original ZS-CoT Ref.

ChatGPT-40 61.1 52.2
77.7

Gemini 2.0 Flash 58.9 60.0

Ref., reference standard (dental student scores); ZS-CoT, zero-shot chain-of-thought; Diff.,

difference in accuracy between original and zero-shot chain-of-thought conditions.
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3.4.1. Changes in accuracy rates after applying zero-shot chain-of-thought based on

educational content

Table 13 shows the accuracy of LMM chatbots under original and ZS-CoT prompting
conditions, categorized by educational content. For ChatGPT-40, no improvement
observed in any content category. The largest decline occurred in image interpretation,
where accuracy dropped from 77.8% to 33.3% (-44.5 points). Basic knowledge remained
unchanged (87.5%), imaging and equipment decreased by 3.7 points (from 88.9% to
85.2%), and all image-based subcategories also showed declines ranging from -7.2 to -9.0

points.

For Gemini 2.0 Flash, the largest improvement was observed in radiographic
diagnosis, where accuracy increased from 15.4% to 38.5% (+23.1 points). In other
categories, basic knowledge decreased by 6.2 points (from 100.0% to 93.8%), and image
interpretation decreased by 11.1 points (from 77.8% to 66.7%). No change was observed
in imaging and equipment (74.1%), understanding radiographic imaging (45.5%), and

interpreting normal anatomy (21.4%).
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Table 13. Accuracy changes with zero-shot chain-of-thought based on educational content,

and comparison with reference standard (dental student scores).

ChatGPT-40 Gemini 2.0 Flash
Ref.
Original ZS-CoT Original 7S5-CoT
Basic knowledge 87.5 87.5 100.0 93.8 78.7
(n=16)
Imaging and equipment
Text (n=27) 88.9 85.2 74.1 74.1 83.5
-only
(n=52) Image interpretation 77.8 333 77.8 66.7 783
(n=9)
TOTAL (n=52) 86.5 76.9 82.7 78.8 81.2
Understanding
radiographic imaging 54.5 45.5 45.5 45.5 75.4
(n=11)
Interpreting
normal anatomy 143 7.1 21.4 214 64.8
Image (n=14)
-based
(n=38) Rad1ograplilc diagnosis 15.4 77 15.4 385 795
(n=13)
TOTAL (n=38) 26.3 18.4 26.3 34.2 72.9

7ZS-CoT, zero-shot chain-of-thought; Ref., reference standard (dental student scores).

39



3.4.2. Changes in accuracy rates after applying zero-shot chain-of-thought based on

question type

Table 14 presents the accuracy of LMM chatbots under original and ZS-CoT
prompting conditions, categorized by question type. For ChatGPT-4o, the largest decrease
was observed in MCQs for text-only questions, with accuracy declining from 86.8% to
71.1% (-15.7 points). SAQs in the same category increased from 85.7% to 92.9% (+7.2
points), surpassing the student score of 82.9%. For image-based questions, both MCQs and
SAQs declined — from 50.0% to 40.0% (-10.0 points) and from 14.3% to 7.1% (-7.2 points),

respectively.

For Gemini 2.0 Flash, MCQ accuracy declined from 78.9% to 73.7% (-5.2 points),
and SAQ performance unchanged at 92.9%, exceeding the student score of 82.9% in text-
only questions. For image-based questions, MCQ accuracy remained at 50.0%. The
accuracy of SAQ increased from 17.9% to 28.6% (+10.7 points), but still fell short of the

student reference score of 71.5%.
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Table 14. Accuracy changes with zero-shot chain-of-thought based on question type, and

comparison with reference standard (dental student scores).

ChatGPT-40 Gemini 2.0 Flash
Ref.
Original  ZS-CoT  Original  ZS-CoT
Multiple-choice 86.8 71.1 78.9 737 80.5

question (n=38)

Text Short-answer
-only question (n=14) 85.7 92.9 92.9 92.9 82.9

(n=52)
TOTAL (n=52) 86.5 76.9 82.7 78.8 81.2
Multiple-choice 50.0 40.0 50.0 50.0 76.7
question (n=10)

Image

-based qﬁ:;f;;‘zfgg) 143 7.1 17.9 28.6 715
(n=38)

TOTAL (n=38) 23.7 15.8 26.3 34.2 72.9

ZS-CoT, zero-shot chain-of-thought; Ref., reference standard (dental student scores).
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4. DISCUSSION

LLMs are transformer-based Al systems trained on extensive textual datasets to
generate coherent and contextually relevant responses. Extending this architecture, LMMs
can simultaneously process and integrate information from diverse sources, including
images, audio, and video. Chatbots based on these models are now widely accessible and
have garnered increasing interest for their potential applications in dental education and
clinical decision support. However, the performance of LLM and LMM chatbots has not
been fully studied in specialized fields such as OMFR, where both factual knowledge and
image interpretation are essential. To address this gap, this study evaluated the performance
of these models using standardized examination items and provided insights into their

current utility and limitations in the OMFR field.

This study evaluated the performance of four LLM chatbots (ChatGPT, ChatGPT Plus,
Bard, Bing Chat) and two LMM chatbots (ChatGPT-40, Gemini 2.0 Flash) using 90
examination questions from the OMFR curriculum, comprising 52 text-only and 38 image-
based items. All questions were entered into the chatbots in Korean and were slightly
reformatted to ensure a consistent prompt structure. For further analysis, the items were
grouped into six educational content categories and two question types. As no official
passing threshold was defined for this examination, the performance of dental students who

had previously completed the same test was used as the reference standard.

Across all six chatbots evaluated in this study, none outperformed the dental student
reference score. ChatGPT Plus demonstrated the highest overall accuracy among the LLM
chatbots at 65.4%, showing a 15.8 percentage point gap compared to student performance.
Although this trend is consistent with prior studies (Ali et al., 2023; Danesh, Pazouki,
Danesh, Danesh, & Vardar-Sengul, 2024; Ohta & Ohta, 2023; Toyama et al., 2024) the
performance of ChatGPT Plus in this study did not reach the highest accuracy levels
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reported for the top-performing LLMs in other medical and dental domains — such as 82.6%
in neurosurgery (Ali et al., 2023), 87.11% in radiology (Patil, Huang, van der Pol, &
Larocque, 2024), 70.8% in respiratory medicine (Rahsepar et al., 2023)), and 73.6% in
periodontology (Danesh et al., 2024). ChatGPT-40 and Gemini 2.0 Flash also failed to
achieve the dental student score. This result aligns with findings from a recent evaluation
using the 2024 Japanese National Dental Examination (Mine et al., 2025), in which
ChatGPT-40 scored 64.3% and Gemini 2.0 Flash scored 57.1% in the OMFR domain —

both performances comparable to those observed in the present study.

In text-based questions, LMM chatbots — ChatGPT-40 and Gemini 2.0 Flash —
demonstrated clear improvements over their LLM-based predecessors and outperformed
the dental student reference score of 81.2%. Notably, the most pronounced gains were
observed in the image interpretation category, where the LLM chatbots had previously
shown poor performance (22.2% for ChatGPT Plus and 33.3% for Bard); in contrast, both
LMMs achieved 77.8% accuracy in the same category. These results are consistent with
findings from a recent study by Tassoker (2025), which evaluated chatbot performance on
123 multiple-choice questions in the OMFR domain (Tassoker, 2025). In that study, the
LMM-based ChatGPT-40 achieved the highest accuracy (86.1%), followed by the LLM
chatbots Bard (61.8%), ChatGPT (43.9%), and Microsoft’s Copilot (41.5%) — a later
version of Bing Chat. The superior performance of LMMs on text-based tasks may not be
solely attributed to model size or recentness. Rather, their multimodal training process
likely contributes to more comprehensive understanding and adaptive reasoning by
enabling the development of broader and more flexible conceptual frameworks — an
advantage in acquiring diverse domain-specific knowledge in highly specialized fields such

as OMFR.

Despite notable advances in text-based reasoning, both LMM chatbots exhibited
substantial limitations in image-based interpretation. This finding indicates considerable
difficulty in recognizing key visual patterns essential for accurate radiographic assessment.

Particularly low accuracy was observed in the identification of normal anatomical
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structures. For example, in a panoramic radiograph where the ear lobe was to be identified
(Fig. 5) — a task correctly answered by 93.1% of students — ChatGPT-40 misidentified it as
the styloid process, while Gemini 2.0 Flash answered the mandibular condyle. In another
item requiring localization of a missing floor of the maxillary sinus (Fig. 6), students
achieved a high accuracy of 87.1%, while ChatGPT-40 and Gemini 2.0 Flash incorrectly
responded with “mandibular canal” and “mandibular condyle,” respectively. One possible
explanation lies in the nature of the training data used for LMMs. While these models are
pre-trained on large-scale image-text pairs (Li et al., 2024; Qi et al., 2020), much of the
data emphasizes general visual understanding rather than the subtle identification of normal
anatomical landmarks. Furthermore, many medical or dental image datasets used during
pre-training are heavily weighted toward pathological cases, potentially biasing model

attention away from normal structures.

The diagnostic performance on radiographic images was also limited. In a case that
presented multiple diagnostic cues — including posterior-anterior and lateral cephalograph
alongside a panoramic radiograph — students unanimously (100.0%) identified the
condition as cleidocranial dysplasia (Fig. 7). ChatGPT-40, however, incorrectly suggested
a possibility of rickets, failing to recognize key radiographic features such as delayed
closure of cranial sutures and fontanelles, underdeveloped maxilla, prolonged retention of
primary teeth, and multiple unerupted supernumerary teeth. In another example, a
panoramic radiograph showing a right mandibular condyle fracture (Fig. 8) was correctly
interpreted by 98.4% of students. Both LMM chatbots, however, failed to localize the lesion,
instead misidentifying it as a left mandibular body fracture, also overlooking the reversed
left-right orientation typical of dental radiographic images. These findings suggest that
current LMMs, despite their multimodal capabilities, lack the domain-specific radiographic

interpretive accuracy required for clinical application in specialized fields such as OMFR.

Analysis results by question type, all LLM chatbots consistently demonstrated higher
accuracy on SAQs than on MCQs. This trend may be attributed to the relative simplicity

of the SAQs used in this study, which required concise, keyword-based responses, in
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contrast to MCQs that demanded comprehensive evaluation of all given options and a
deeper understanding of OMFR knowledge. However, this pattern was reversed in the LLM
chatbots, which exhibited higher accuracy on MCQs than on SAQs. These findings are
consistent with those of a previous study by Mine et al. (2025), which reported similar
MCQ accuracy scores in the OMFR domain — 66.7% for ChatGPT-40 and 50.0% for
Gemini 2.0 Flash — although image-based SAQs were not included in their evaluation
(Mine et al., 2025). This suggests that the enhanced architecture of LMMs may better
support structured decision-making tasks such as MCQs, despite their continued limitations

in generating accurate responses for complex dental imaging interpretation.

Response consistency was generally high in text-based and multiple-choice formats
but decreased in image-based and short-answer tasks. These discrepancies may stem from
fundamental structural differences between response types. MCQs in this study required
selecting a single answer from a fixed set of choices while SAQs allow open-ended
responses, resulting in broader variability in phrasing. The stochastic nature of
autoregressive language models, which generate text by sampling from probability
distributions, may further contribute to inconsistencies in complex image-based tasks (Kim
et al., 2024). Despite the use of a rule-based normalization process to address minor lexical
variation, agreement remained low — especially in image-based items, where models
frequently generated entirely different interpretations. For instance, when interpreting
panoramic image of a patient with “hyperparathyroidism” (Fig. 9), the chatbots generated
a wide range of diagnoses, including osteogenesis imperfecta, nevoid basal cell carcinoma
syndrome, cleidocranial dysplasia. Although only the first responses were used for
accuracy scoring in this study, such variability underscores an important concern: even
advanced LMMs may generate inconsistent outputs for the same task. This emphasizes that
blind reliance on chatbot outputs, especially by individuals without domain expertise, may

lead to serious errors in judgment.

The hallucination analysis demonstrated that both LMM chatbots generally produced

responses of acceptable quality when evaluated by expert radiologists, particularly for text-
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based questions. Performance was consistently higher in multiple-choice formats than in
short-answer formats, and for text-only items compared to image-based items. But
hallucination increased substantially in image-based tasks, particularly for SAQs. These
findings suggest that the integration of visual information introduces additional complexity
that can compromise the models' ability to generate well-grounded, evidence-based
responses (Sun et al., 2023). In clinical applications where multimodal input is essential,
such as radiologic diagnosis, this vulnerability remains a critical challenge. Ongoing
improvements in multimodal alignment, domain-specific training, and reasoning
capabilities will likely be necessary to mitigate hallucination risks in complex diagnostic

contexts.

ZS-CoT prompting was applied to evaluate whether structured reasoning could
improve chatbot performance by inserting a simple instruction in Korean (“Let’s think step
by step”) at the beginning of each query. Although this technique has previously
demonstrated substantial improvements in accuracy across various reasoning tasks in
natural language processing (NLP) (Kojima et al., 2022), it failed to make meaningful
improvements not only on text-based tasks where chatbots already perform well, but also
on image interpretation, where chatbots struggle significantly. These results suggest that
the benefits of ZS-CoT prompting in facilitating robust reasoning effects may not
generalize to highly domain-specific fields such as OMFR. Many OMFR tasks require
factual recall rather than multi-step reasoning, thereby limiting the utility of stepwise
prompting strategies. Similar findings have been reported in prior biomedical (Nagar et al.,
2024) and oncology (Chen et al., 2024) studies, highlighting the need for further research
to establish the reliability of prompt engineering approaches in enhancing the accuracy of

multimodal chatbots.

This study has several limitations. First, the evaluation was conducted using general-
purpose chatbot interfaces without API-based access or additional domain-specific training.
It remains unclear to what extent the models have been exposed to OMFR content during

their pretraining, limiting the ability to interpret the source and depth of their domain
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knowledge. Second, all experiments were performed using default settings without any
adjustment of parameters such as temperature, response length, or prompt structure. The
performance observed in this study may therefore not fully reflect the chatbots’ potential

under optimized conditions.
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Q. Write the most appropriate anatomical structure indicated by the yellow

arrows in the following panoramic radiograph.

g

Fig. S5 Panoramic radiograph presented as an example of identifying a normal anatomical

structure (ear lobe).

Q. Write the most appropriate normal anatomical structure missing in the

following panoramic radiograph.

Fig. 6 Panoramic radiograph presented as an example of identifying a normal anatomical

structure (missing floor of the maxillary sinus).
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Q. Write the most appropriate diagnosis based on the following

radiographs (A. posteroanterior cephalometric radiograph, B. lateral

cephalometric radiograph, C. panoramic radiograph).

Fig. 7 Various radiographs presented as an example requiring radiographic diagnosis

(cleidocranial dysplasia).

Q. Write the most appropriate anatomical structure in which a fracture is

observed in the following panoramic radiograph.

— r K 4

Fig. 8 Panoramic radiograph presented as an example of identifying a fracture of an

anatomical structure (condylar head).
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Q. Write the most suspicious systemic disease from the following

panoramic radiograph.

Fig. 9 Panoramic radiographs presented as an example requiring radiographic diagnosis

(hyperparathyroidism).
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5. CONCLUSION

This is the first study to present a comprehensive evaluation comparing general-
purpose chatbot performance to actual student outcomes in the OMFR domain using a
multidimensional dataset encompassing both text- and image-based questions. Additionally,
this study provides a longitudinal assessment of performance progression from LLM to
LMM chatbots, offering insight into the evolving capabilities of Al chatbot within a

specialized dental domain.

The performance of four LLM and two LMM chatbots was evaluated using text- and
image-based examination questions covering six educational content categories and two
question types. Key performance indicators—including accuracy, hallucination, ZS-CoT
prompting, and response consistency—were systematically analyzed to provide a

comprehensive assessment of chatbot performance in this highly specialized dental domain.

LMM chatbots demonstrated superior accuracy and response quality compared to
LLM chatbots in text-based tasks, and outperformed students in some areas. However, their
performance remained limited in image-based diagnostic tasks. A high degree of
inconsistency and hallucination was observed, particularly in complex visual interpretation
and short-answer formats. ZS-CoT did not result in meaningful improvements in response

accuracy.

Future research should include datasets with diverse clinical images and case
scenarios to better evaluate multimodal reasoning. Model customization, including
hyperparameter tuning and advanced prompting, may help reduce hallucination and
improve performance in complex diagnostic tasks. These efforts are essential for the safe

and effective application of Al chatbots in dental education and clinical practice.
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