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ABSTRACT

Predicting Tooth Mobility and Implant Stability
using Periapical Radiographic Features
and Implant Stability Test Data

This study proposes a machine learning framework for predicting tooth mobility and implant
stability by integrating anatomical features extracted from periapical radiographs with
biomechanical measurements (IST values). A total of 407 annotated radiographs were expanded to
2,038 via geometric augmentation. Structural indices—such as head-to-root area ratios,
periodontal ligament visibility, and root morphology—were engineered into composite features. A
stacked ensemble model, incorporating LightGBM, XGBoost, and Random Forest with a Ridge
Regression meta-learner, was trained on these features.

The best-performing model achieved an R? of 0.6840, MAE of 4.0132, and MSE of 46.6392,
demonstrating robust alignment between predicted and actual IST values. SHAP analysis revealed
that root type and crown-root ratios were the most influential predictors. Although ligament
annotations were sparse, their inclusion improved model accuracy in well-annotated cases.

These findings highlight the potential of anatomy-aware, image-based regression models to
non-invasively assess periodontal support and implant stability. The proposed framework bridges
radiographic morphology and objective biomechanics, offering a reproducible, data-driven

approach for clinical decision support in dentistry.

Key words: Tooth mobility, Implant stability, IST value, Periapical radiograph, Machine learning,

Periodontal assessment



1. INTRODUCTION

Periodontal disease is a prevalent, chronic inflammatory condition that compromises the
supporting structures of the teeth, including the periodontal ligament and alveolar bone (Lang &
Bartold, 2018). Characterized by progressive tissue degradation, the disease leads to increased
tooth mobility as the periodontal ligament fibers loosen and vertical bone height diminishes
(Elemek, 2022). Clinically, it manifests through sustained inflammation, connective tissue
attachment loss, and alveolar bone resorption—pathological processes that collectively increase
tooth mobility. These changes adversely affect masticatory function, and may result in pain,
discomfort, and eventual tooth loss, thereby impairing both oral and systemic quality of life.

Radiographic imaging is essential for the diagnosis and longitudinal assessment of periodontal
disease (Hoss et al., 2023). Among available modalities, periapical radiography remains a widely
adopted tool due to its high resolution and ability to visualize fine anatomical details of teeth and
their surrounding structures. When combined with clinical indicators—such as probing depth and
tooth mobility—periapical images offer a comprehensive diagnostic framework that enhances the
accuracy of disease evaluation and informs treatment strategies (Elemek, 2022).

In this context, tooth mobility serves as a critical parameter in assessing periodontal health
(Kim et al., 2023), providing valuable insight into disease severity and progression. It also plays a
central role in diagnostic decisions, treatment planning, and outcome monitoring. Conventionally,
mobility is evaluated manually through controlled force application, with displacement assessed
subjectively (Meirelles et al., 2020). The Miller Classification System, one of the most widely
used frameworks, grades mobility into three categories based on the extent of horizontal and
vertical movement. However, these methods are inherently subjective and susceptible to inter-
examiner variability, which compromises reproducibility and limits research applicability.

To address the limitations of subjective mobility grading systems, objective and non-invasive
diagnostic tools have been developed (Okuhama et al., 2022). Among them, the stability
measuring instrument (AnyCheck, Neo Biotech, South Korea) has gained clinical acceptance for
their ability to standardize mobility assessments through vibrational impulse testing. The
instrument quantifies the biomechanical response of a tooth by delivering controlled vibrational

impulses (D.-H. Lee et al., 2020). This procedure yields an Implant Stability Test (IST) value that
1



inversely correlates with mobility (J. Lee et al., 2020). Higher IST values indicate greater
structural stability, while lower values suggest compromised periodontal support.

Although the IST values obtained from the instrument offer improved reproducibility and
diagnostic precision, they represent a purely mechanical measurement and do not incorporate
anatomical variations that may critically influence overall stability. Therefore, IST values alone
may not capture the full biomechanical context necessary for accurate clinical interpretation.

Recent advances in digital imaging and artificial intelligence (AI) (Ari et al., 2022) have
further enhanced the precision and depth of periodontal assessment (Medina-Sotomayor et al.,
2019). They have enabled automated extraction of structural features from dental radiographs,
supporting enhanced diagnostic workflows (Celik et al., 2023). However, existing Al applications
in dentistry have largely focused on classification tasks (Benakatti et al., 2022), such as caries
detection or bone loss segmentation, rather than the prediction of quantitative biomechanical
indicators like IST values. Furthermore, few models integrate radiographic anatomy with clinical
mechanical measurements (Cha et al., 2021) to evaluate tooth mobility or implant stability. This
gap limits the potential for fully automated, anatomy-aware diagnostic systems.

To address this, I propose a data-driven machine learning framework that integrates
radiographic structure and clinical measurement by combining image-derived support-related
features with IST values obtained from the instrument. By combining objective radiographic and
clinical measurement, the framework enables more precise, individualized assessment of dental
support conditions and may facilitate earlier intervention to prevent structural deterioration.

To approximate clinically relevant indicators of mobility, I extracted image-based structural
features from periapical radiographs that reflect anatomical support integrity, such as head-to-root
proportions and ligament visibility, both of which are well-established correlates of biomechanical

stability in periodontics.



2. MATERIALS AND METHODS

2.1 Data Pre-processing

2.1.1 Data Annotation

This study developed a quantitative index system based on anatomical segmentation and
weighted area ratios to assess the contribution of distinct dental regions to overall tooth mobility.
This system enables objective measurement and facilitates multivariate statistical analysis of
biomechanical stability.

The dataset comprises 407 periapical radiographs, approved by the Institutional Review Board
of Dental Hospital, Yonsei University, South Korea (IRB No. 2-2025-0018). All images were
selected to preserve complete tooth morphology, ensuring morphological completeness and
annotation consistency. Corresponding IST values were acquired during clinical procedures. These
values served as surrogate indicators of tooth mobility.

Each radiograph was annotated using the open-source labeling platform Computer Vision
Annotation Tool (CVAT). The following three anatomical regions were defined:

Head: The supragingival portion of the tooth above the bone line.

Root: The subgingival portion of the tooth below the bone line (each tooth could contain one
or more root labels).

Ligament: The visible periodontal ligament (PDL) region, annotated selectively based on

visibility thresholds.



2.1.2 Data Augmentation Specifics

To enhance model robustness and mitigate overfitting, a series of geometric data augmentation
techniques were applied to simulate anatomical variability commonly observed in periapical
radiographs. The augmentation process included the following transformations:

Rotation: Random rotation within a range of £30 degrees

Scaling: Resizing within a range of 80% to 120% of the original image size

Shearing: Affine shear transformations along both the horizontal (X-axis) and vertical (Y-axis)
directions to mimic non-uniform morphological distortions

Interpolation: Applied to maintain image continuity during spatial transformations

A total of 1,628 augmented samples were generated through this process, increasing the
dataset from 407 original instances to approximately 2,038 samples. Among these, 1,160 samples
belong to the Tooth category and 878 to the Implant category. This expanded dataset contributed
to reducing model variance and improving generalization performance, especially under conditions

of limited annotated data.

2.1.3 Data Standardization and Splitting

All input features were standardized using the StandardScaler method from Scikit-learn to
achieve zero mean and unit variance, ensuring scale uniformity across predictors. The dataset was
randomly split into training and validation sets in an 80:20 ratio, the random seed was fixed at 42

to ensure reproducibility.



Root
Head

Ligament

Figure 1. Periapical & Annotation image sample



2.2 Computational Methods

2.2.1 Feature Definition and Engineering

The selected structural features were designed to approximate clinically recognized
determinants of tooth mobility. Specifically, head-to-root ratios have long been associated with
periodontal support capacity (Tada et al., 2015; Hartmann et al., 2017), while the visibility of the
periodontal ligament reflects surrounding soft tissue integrity. By quantifying these anatomical
indicators from radiographs, the model aims to emulate clinical judgment within an interpretable,
image-based framework, using IST values as an objective surrogate for mobility grading.

The dataset was composed of two distinct categories: Tooth and Implant. During modeling,
separate models were trained for each category to account for their specific characteristics.

Based on the annotated regions, three primary structural metrics were derived to quantify
region-specific contributions to overall tooth mobility:

Head Area Ratio: The ratio of the crown area to the total object area.

Head_Area_Ratio = Head_Area / Total_Area

A higher value suggests a larger exposed crown relative to root support, potentially indicating
higher mobility.

Root_Area Ratio: The ratio of the root area to the total object area.

Root_Area_Ratio = Root_Area / Total_Area

Higher values generally reflect greater subgingival anchorage, implying increased stability.

Ligament Weight: A categorical variable (ranging from 0 to 3) representing the proportion of
the visible PDL region.

For the Implant category, Ligament Weight is consistently set to 0, while for the Tooth
category, weights ranging from 1 to 3 are assigned based on the relative area of the visible PDL.

The Ligament Weight feature, unique to the Tooth category, was present in only 24.14% of

annotated samples.



This reflects the hypothesis that a more extensive ligament area, when present, may correlate

with reduced stability and increased mobility.
In addition to annotated regions, a binary classification of root morphology—referred to as

Root_Count—was introduced to further distinguish between tooth types:

Root_Count: Categorized based on the number of tooth roots.
Teeth with FDI numbers 1-5 were labeled as single-rooted (Root Count_Single), while teeth

numbered 6—7 were labeled as multi-rooted (Root Count Multi) (Ziegler et al., 2005).
To enhance feature expressiveness and capture second-order relationships, I introduced

composite features that reflect both physiological interactions and statistical dependencies between

anatomical regions.
These composite features including Multiplicative and Division Interaction between

Head Area Ratio and Root Area Ratio:
Head_mul_Root Head_Area_Ratio X Root_Area_Ratio

Head_div_Root
Given that IST values were predominantly concentrated within the range of 40 to 99 and

Head_Area_Ratio =+ Root_Area_Ratio

exhibited a slight right-skew, using a log transformation can help improve model performance by
providing a smoother compression and enhancing generalization. This transformation was applied

to stabilize variance and mitigate the influence of outliers, as formulated below:

Log Transformation
ISTtransformed =log(IST + 1)

For model training, the regression target IST underwent a logarithmic transformation to

stabilize variance and reduce right-skewness. For final evaluation, predictions were transformed

back to the original scale to facilitate clinical interpretation.
These variables collectively form the basis of the proposed index system, incorporating both

geometric and biological factors into a unified predictive model of tooth mobility.
For the Implant category, only “Head Area Ratio,” “Root Area Ratio,” “Multiplicative

Interaction” and “Division Interaction” were utilized, whereas the Tooth category additionally

included “Ligament Weight” and “Root Count” to better capture category-specific anatomical

features.



Table 1. Independent variables & Dependent variable Sample

Number | Head Area Ratio Root Area Ratio |Ligament Weight| Root Count | IST
234 1 36| 0.633610452514933 | 0.331466425162557 2 Multi 85
212 3 45/ 0.621939166530842 | 0.378060833469159 1 Single 64
178 1 25| 0.793570225976259 | 0.206429774023741 1 Single 52
91 2 21 0.662396467998998 | 0.296749255855085 2 Single 72
59 2 46 | 0.585527248193002 | 0.366902942098214 3 Multi 91




Root
Head

234_1_36 212_3_45
178_1_25 91 2 21 59_2 46

Figure 2. Independent variables & Dependent variable image sample



2.2.2 Model Architecture and Implementation

All computational procedures were implemented using Python 3.11, supported by PyTorch,
OpenCV, and Scikit-learn libraries.The overall workflow included preliminary model exploration,
features preprocessing, stacked ensemble design and hyperparameter optimization.

Prior to developing the final ensemble model, several baseline regressors were tested to assess
the predictive potential of the data. Ridge Regression and Lasso were initially employed due to
their built-in regularization properties, which are particularly effective on small datasets with
potential multicollinearity. When linear models demonstrated insufficient performance, non-linear
alternatives such as Random Forest, Support Vector Regression (SVR), and Polynomial
Regression were explored.

During this phase, standardization was selectively applied to mitigate distributional disparities
across features and facilitate fair model comparison. These preliminary experiments served to
identify effective modeling approaches and guide subsequent ensemble design.

Based on insights from the exploratory stage, a two-layer stacked regression model was
constructed to enhance predictive performance. The ensemble consisted of three diverse base
learners:

Random Forest Regressor — Robust to noise with strong interpretability.
XGBoost Regressor— High predictive accuracy with effective overfitting control.
LightGBM Regressor — Memory-efficient and well-suited for large-scale data.

These models were selected for their capacity to handle non-linear relationships and feature
interactions without requiring extensive preprocessing. Their predictions were combined via a
meta-regressor implemented using LightGBM, forming a standard level-1 stacking architecture,
which allows the ensemble to leverage the strengths of each base learner—combining the
robustness and interpretability of Random Forests, the precision and regularization of XGBoost,

and the scalability of LightGBM.

10



This stacking approach enhances generalization by learning from the unique error patterns of
each model via a meta-learner, making the ensemble more adaptable to diverse feature types and
data distributions.

To ensure that all models operated under comparable conditions, input features were
standardized using z-score normalization. Categorical variables (e.g., Root Count from root
morphology) were one-hot encoded, and derived composite features (e.g., multiplicative and
divisive interactions) were retained in the final feature matrix. The target variable (IST) was log-
transformed prior to training to reduce skewness and stabilize model learning.

For the Implant category, features irrelevant to implants—such as Ligament Weight and
Root_Count, which pertain exclusively to natural dentition—were excluded to prevent information
leakage and model bias. By tailoring the feature set in this way, the modeling strategy ensured that
the learned representations were both physiologically meaningful and statistically robust across
categories.

To improve the generalization capacity of the stacking ensemble, the LightGBM model—used
as both a base learner and the meta-learner—was fine-tuned using Bayesian optimization via
Optuna.

The optimization process yielded a set of finely tuned hyperparameters that balanced model
complexity and regularization. The best configuration identified by Optuna included a learning
rate of 0.02 and 104 boosting iterations (n_estimators), supporting gradual convergence and
enhanced stability. Tree structure was controlled through a maximum depth of 6, 139 leaves, and a
minimum of 47 samples per leaf, which effectively mitigated overfitting risks. In terms of
sampling strategies, the model employed 62.73% feature subsampling (colsample bytree) and
74.14% instance subsampling (subsample), contributing to model robustness and generalization.
Regularization was applied via L1 (reg_alpha = 0.6562) and L2 (reg_lambda = 0.2589) penalties,
promoting sparsity and reducing variance. These hyperparameters collectively improved the
ensemble's ability to generalize across unseen data while maintaining high predictive performance.

The optimal hyperparameters derived from this process were directly applied to the
LightGBM components of the final ensemble. Model fitting was conducted on 80% of the data,

with the remaining 20% reserved for independent performance evaluation.

11



2.3 Model Evaluation

2.3.1 Statistical Analysis of Model Performance

Model performance was quantitatively assessed using three widely recognized regression
metrics:
R? (Coefficient of Determination): Measures the proportion of variance in the dependent
variable explained by the model.
MAE (Mean Absolute Error): Represents the average magnitude of absolute prediction
errors, providing a direct measure of accuracy.
MSE (Mean Squared Error): Penalizes larger errors more heavily, offering sensitivity to
outliers due to the squaring operation.
In addition to numerical evaluation, two forms of visual analysis were conducted to further
inspect model behavior:
Residual Distribution Plots: Used to assess the spread and symmetry of residuals, supporting
the detection of bias and heteroskedasticity.
Scatter Plots of Predicted vs. Actual IST Values: Used to visualize the alignment between
predicted outcomes and ground truth labels, offering insight into the consistency and precision of

model predictions.

2.3.2 Evaluation Strategy

To assess the predictive performance of the proposed model, I employed a stratified 80/20
hold-out validation strategy based on the log-transformed IST values. This approach ensured that
the held-out test set preserved the overall distribution of the target variable, thereby providing a

stable and interpretable estimate of model generalization.

12



While cross-validation (e.g., 5-fold) is commonly used in small-sample machine learning
settings, it was not adopted in this study due to several key limitations observed during preliminary
evaluation:

Limited sample size: Although data augmentation increased the total sample count from 407
to approximately 2,038, the augmented instances were derived from existing images and thus
lacked independent diversity. As a result, partitioning the dataset into five folds yielded validation
subsets that were both small in size and compositionally similar, undermining the stability and
reliability of cross-validation estimates.

Non-uniform target distribution with outliers: The IST values were concentrated in the 40-99
range but included a small number of outliers. These outliers disproportionately influenced
individual folds, resulting in unstable and unrepresentative performance estimates.

Low variance in target values across folds: A substantial number of samples shared identical
IST values despite having distinct structural features. This redundancy reduced the model’s
capacity to generalize within each fold. It often led to negative R? values in cross-validation, which
did not reflect the model’s true predictive capacity.

Given these challenges, the stratified hold-out strategy was determined to be a more reliable
alternative. It allowed for a distributionally representative and independent test set, offering a more
reliable estimate of the model's real-world predictive utility.

All feature engineering and model configurations remained consistent across evaluation
strategies.

It is important to note that k-fold cross-validation does not inherently cause overfitting. On the
contrary, it is typically used as a safeguard against overfitting by assessing model performance
across multiple subsets of the data. However, in this study, the issues related to sample
redundancy, limited diversity, and outlier sensitivity impaired its effectiveness. Consequently, the
poor cross-validation results observed were not due to overfitting induced by the method itself, but

rather due to the unsuitability of cross-validation under the given data constraints.

13



3. RESULTS

3.1 Data Characterization

SHAP (SHapley Additive exPlanations) is a game-theoretic approach to explain the output of
machine learning models by assigning each feature an importance value for a particular prediction.
It is based on Shapley values from cooperative game theory, which fairly attribute the contribution
of each feature by considering all possible feature combinations. SHAP ensures consistency and
local accuracy, and it provides a unified framework for interpreting model predictions across
various algorithms (Lundberg & Lee, 2017).

Based on SHAP global importance analysis, Root Count Single emerged as the most
influential feature in the final stacked model, followed by Head Area Ratio. Features such as
Head mul Root, Head div_Root, and Root Area Ratio contributed modestly to the model's
predictions, suggesting that interactions among anatomical ratios still provide some predictive
information. Although Ligament Weight had low global SHAP importance, its inclusion
improved performance in specific well-annotated cases. Conversely, features like
Root_Count_Multi showed relatively lower SHAP values, indicating limited global influence on

prediction outcomes.
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Table 2. The quantitative feature contributions

Head Area Ratio 0.026463092252297
Root Area Ratio 0.00811624670968596
Ligament Weight 0.0106117627431046
Head_div_Root 0.00820128856193532
Head mul Root 0.00907187055508318
Root_Count_Single 0.0342623996169037
Root Count Multi 0.011981388153502

15




3.2 Model evaluation results

To evaluate the predictive efficacy of the proposed framework, a series of regression models
were trained and tested on both baseline and augmented datasets. A comprehensive comparison
across all model configurations is summarized in Table 3 and Figure 3.

Among the tested configurations, the best-performing model was the Stacked Ensemble
Regressor with Optuna-Tuned Base Learners, which achieved R? = 0.6840, MAE = 4.0132, and
MSE = 46.6392. As shown in the scatter plot (Figure 4) reveals a strong linear relationship
between predicted and actual IST values. The majority of data points distributed closely around
the identity line (y=x), indicating a high level of consistency and predictive reliability. The scatter
plot indicates high predictive consistency across the dataset, although slight deviations appear at
the lower and upper bounds.

This model exhibited greater deviation from the identity line(Figure 5), particularly at the
distribution extremes—suggesting lower predictive stability for high and low IST values. The
residuals are approximately normally distributed, centered near zero, suggesting that the model
does not exhibit systematic over- or under-prediction. A minor left-skew was observed,
corresponding to a slight tendency to overestimate IST values in a subset of cases. Most residuals
fell within the acceptable range of -15 to +15, which aligns well with the target IST range (~40—
99).

A slightly less performant, but still competitive, configuration was the Stacked Ensemble with
Next-Best Parameters, which yielded an R? = 0.6712, MAE = 3.9735, and MSE = 48.5285.
Although this variant used a different parameter set, the ensemble structure still contributed to
superior performance relative to standalone models.

In contrast, the single-model LightGBM regressor, trained using the best Optuna-tuned
parameters, achieved an R? = 0.5443, MAE = 4.9295, and MSE = 52.6795. Another LightGBM
variant with an alternative tuning set performed R? = 0.5928, though with marginal improvements
in MSE.

These findings highlight the superiority of ensemble learning—particularly stacking

approaches—in modeling the complex relationship between anatomical features and IST values.
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The added diversity and regularization inherent in the ensemble framework appear to contribute to
both improved generalization and resilience against overfitting, especially in data-constrained

settings.

17



Table 3. Performance comparison of regression models on IST prediction

Model name Description R? MAE MSE
LGBM with best LGBM with Optuna-tuned

Optuna-tuned parameters 0.5443 4.9295 52.6795

LGBM with next best LGBM with alternative
parameters tuning 0.5928 4.5154 47.0762

Stack with next best Stacking ensemble with
parameters alternative tuning 0.6712 3.9735 48.5285

Stack with best Optuna- | Stacking ensemble with
tuned optimal tuning 0.6840 4.0132 46.6392

18




Comparative Performance of Regression Models
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Figure 3. Comparative Performance of Regression Models

(A) The R? scores for each model variant demonstrate the increasing explanatory power from

single LightGBM models to stacked ensembles. (B) The MAE comparison highlights improved

prediction accuracy in ensemble models, with reduced average absolute error. (C) MSE values

further confirm the robustness of the best-performing ensemble, showing minimized squared

deviations from actual IST values.
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Figure 4. Scatter plot for the Best stacking ensemble model

Figure 4 illustrates the relationship between the predicted and actual IST values using the best-

performing stacking ensemble model.

The red dashed line represents the ideal prediction line (i.e., y = x), where predicted values
perfectly match the actual values. Most points are closely clustered around this line, indicating that
the model achieves good predictive accuracy across the IST range. Some deviations are observed

at the lower and higher ends of the spectrum, which may be attributed to either natural data

variability or feature distribution sparsity in those regions.

Overall, the alignment between predicted and actual values confirms that the model

generalizes well and captures the underlying trends in the dataset.
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Figure 5. Residual error distribution for the Best stacking ensemble model

Figure 5 shows the residual distribution of the model’s predictions, calculated as the
difference between predicted and actual IST values.

The distribution is approximately symmetric and centered around zero, suggesting that the
model does not exhibit significant bias toward under- or over-prediction. The sharp peak near zero
indicates that a large number of predictions are very close to the true values. While there are a few
outliers on both sides, their frequency remains relatively low, further supporting the model's
stability and reliability.

This residual analysis provides evidence that the stacking ensemble is both accurate and

consistent in its performance.
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Table 4. Predict Sample of regression models

NO | Ground single-model Stacked Ensemble | Best single-model Best Stacked
Truth LightGBM Regressor LightGBM Ensemble
IST regressor regressor Regressor
1 89  |67.0678751640609 | 71.1676402452464 | 77.1332373477588 | 84.3374702690263
2 85 60.2180043276674 | 62.586692774391 |76.7609012128253 | 77.5427520945426
3 82 |61.4157276436492|63.5794775412525|70.3452923363921 | 70.3753408507754
4 71 |66.9118596274807 | 67.7177509260275 | 77.9459981014538 | 72.9760140305359
5 68  |82.2642009499803 | 76.3036935152867 | 72.5085160633591 | 71.3952839030461
6 65 |68.2898967789879|69.0995562634188 | 65.4657097072644 | 65.3433472116171
7 65 |68.7817063962947|67.2148531529094 | 70.2864725056201 | 67.9001878907733
8 63 |63.3571639179658 | 66.7881551038627 | 67.3833460130366 | 63.1097995392522
9 56 | 63.6274764397264 | 64.0688536739561 | 61.9850946935996 | 61.6014424055396
10 43 |76.3857699636348|75.1367352801903 | 59.0547807673703 | 58.9560645537547
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3.3 Hold-Out Validation Result

The final model, previously identified as the stacking ensemble with optimal Optuna tuning,
was evaluated on the hold-out set to assess generalization performance. The stacking ensemble
achieved R? = 0.6840, MAE = 4.0132, and MSE = 46.6392. These results, though slightly lower
than those from the augmented training set, confirm the model's generalizability and practical

viability in clinical prediction tasks.
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4. DISCUSSION

4.1 Impact of Sample Size and Data Sparsity

The limited sample size (n = 407) constrained model generalization and reduced statistical
power. To mitigate this, geometric data augmentation was applied to simulate anatomical
variability, expanding the dataset to 2,038 instances. This enrichment improved model stability—
particularly for implants, where greater heterogeneity exists (Park et al., 2023; Pedram Pakravan et
al., 2024).

Sparse annotation of ligament structures posed another challenge. The Ligament Weight
feature was present in only 24.14% of annotated cases, yet its inclusion yielded noticeable gains in
specific scenarios where the periodontal ligament was well-defined. Although SHAP analysis
indicated low global importance, its localized predictive value underscores the diagnostic potential
of ligament-related features.

These findings suggest that improving segmentation accuracy could enhance ligament-aware
modeling. Future work should incorporate more precise ligament annotations to fully leverage this

feature's utility.

4.2 Model Performance Metrics and Interpretation

An R? value of 0.6840 indicates that the model explains approximately 68.4% of the variance
in IST values. While not exceptionally high, this level of performance is acceptable considering
the limited dataset size and the restricted scope of available features.

Such values are typical in biomedical regression tasks involving small or noisy data,
especially in scenarios where ligament-related samples are underrepresented, limiting the model’s

ability to learn biomechanical associations.
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However, it also reflects the model’s inability to fully capture latent biomechanical or clinical
determinants of mobility, underscoring the need for richer and more diverse input data.

The mean absolute error (MAE) of 4.0132 should be interpreted in the context of a typical IST
range of 40 to 99. This suggests that the model may be adequate for screening purposes or as an
adjunct to clinical assessment, though it may not yet meet the precision standards required for
high-stakes diagnostic decisions.

The mean squared error (MSE) of 46.6392 further highlights the presence of occasional large
prediction deviations, indicating the need to control for outliers and reduce predictive variance.

Future improvements should aim to further enhance R? and minimize large errors by
incorporating more diverse and semantically rich input features—particularly those capturing

ligament-specific biomechanical and anatomical characteristics.

4.3 Model Performance and Feature Utility

The stacking ensemble model with Optuna-tuned base learners exhibited the best predictive
performance across all tested configurations. By integrating LightGBM, XGBoost, and Random
Forest as base learners—and employing Ridge Regression as the meta-learner—the ensemble
effectively captured both nonlinear and linear feature interactions. This architecture enhanced
generalization capacity and mitigated the risk of overfitting.

Among the input features, Head Area Ratio displayed a strong inverse association with IST
values, aligning with clinical expectations that a higher head-to-root ratio suggests diminished
periodontal support.

In contrast, Root_Area Ratio was positively correlated with IST values, likely indicating the
stabilizing biomechanical influence of the subgingival root structure.

To better capture complex anatomical interactions, two nonlinear composite features—
Head Area Ratio x Root Area Ratio and Head Area Ratio + Root Area Ratio—were
introduced to capture potential interactions between anatomical regions:

Head Area Ratio x Root Area Ratio (Multiplicative Interaction): Reflects the joint

contribution of crown and root area, emphasizing configurations where both regions are
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simultaneously large. This can signal enhanced or reduced biomechanical stability depending on
structural coupling, and is especially informative for linear models such as the RidgeCV meta-
learner used in the stacking framework.

Head Area Ratio + Root Area Ratio (Division Interaction): Captures the relative balance
between the crown and root, e.g., "large head with small root" or vice versa. This proportion may
reflect morphological abnormalities or stress concentration zones, providing additional shape-
based cues for IST prediction.

Table 5 summarizes the contribution of each composite feature within the stacked model.
These results confirm that both features contribute positively to predictive accuracy, particularly in

capturing complex biomechanical interactions.
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Table 5. Each Features Influence in Stack model

Configuration R? MAE MSE
Best result (All Features) 0.6840 4.0132 46.6392
Exception Area_Ratio Head +Area_Ratio Root 0.4978 5.1276 58.0490
Exception Area_Ratio Head xArea Ratio Root 0.5237 5.2649 55.0646
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4.4 Limitations and Future Directions

Achieving an R? of 0.6840, suggesting moderate predictive capacity within the current dataset
and feature scope, several limitations merit discussion:

Limited Sample Size: Despite a fivefold increase in dataset size through augmentation, the
lack of genuinely independent cases limited the effective variability of the training data. In
particular, multiple samples sharing identical IST values but differing anatomical features may
have confused the model’s learning process. Expanding the dataset to 3,000-5,000
radiographically distinct cases would likely enhance generalizability and improve the stability of
model predictions.

Feature Redundancy and Low Interaction Diversity: The current features and their
combinations capture structural ratios but may lack sufficient heterogeneity. Inclusion of global
metrics such as Area Ligament / Total, Total Area, or morphological complexity indices could
enrich the feature space.

Absence of Clinical Metadata: Potential confounders such as age group (e.g., young vs.
elderly), periodontal status, or trauma history of periodontal trauma were not included.
Incorporating such non-image features could enhance model interpretability and clinical relevance

through stratified modeling.

4.5 Category-Specific Validation

The final model was trained on a combined dataset composed of both tooth-only and implant-
only categories, using a unified modeling framework. Performance across these subsets was:

Tooth-only Category: R? = 0.5526, MAE = 4.9249, MSE = 51.7141

Implant-only Category: R? = 0.3957, MAE = 6.2847, MSE = 66.6596

These results reveal higher predictive accuracy in tooth-only category compared to implant-

only category. The lower performance in the implant category may stem from greater anatomical
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variability or data imbalance, and highlights an area for future model refinement or stratified

training.

4.6 Lower Predictive Performance in Implant-only Category

Subgroup analysis revealed that model performance was substantially lower for implant-only
category, compared to tooth-only category. This discrepancy likely reflects greater anatomical and
biomechanical heterogeneity in implant-supported structures, which are less biologically
standardized than natural teeth.

Future improvements could include:

Incorporating implant-specific features, such as implant length, material type, crown-abutment
design, or peri-implant bone density (Pedram Pakravan et al., 2024).

Including peri-implant morphological characteristics (Jang et al., 2022) (e.g., bone-implant
contact ratio, surrounding bone remodeling patterns).

Using separate sub-models or ensemble components tuned specifically for implant cases to
reduce modeling noise from heterogeneity.

These implant-specific enhancements may help close the performance gap and ensure more

balanced predictive capacity across clinical scenarios.
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S.CONCLUSION

This study demonstrated the feasibility of predicting tooth mobility by integrating
radiographic anatomical features with objective stability measurements derived from the device.
By aligning clinical insight with image-based structural analysis, I developed a supervised learning
framework capable of estimating IST values—serving as a surrogate marker for periodontal
support—based on periapical radiographs (Ozbay et al., 2024).

The proposed stacking ensemble model, incorporating LightGBM, XGBoost, and Random
Forest as base learners with a Ridge Regression meta-learner, achieved the highest predictive
performance across all tested configurations. Feature analysis revealed that head-to-root ratios and
composite morphological interactions significantly contributed to prediction accuracy (Park et al.,
2023), while even sparsely annotated periodontal ligament features provided meaningful signal
when appropriately embedded within the ensemble architecture.

Looking forward, future studies should expand the dataset to improve statistical power,
incorporate clinical metadata to enhance context sensitivity, and explore multi-modal frameworks
that integrate imaging, patient history, and biomechanical data (Huang et al., 2022). These
directions will be essential for refining the predictive capacity of Al-based diagnostic systems and

bring them closer to real-world clinical integration.
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