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ABSTRACT 

 

Predicting Tooth Mobility and Implant Stability  

using Periapical Radiographic Features  

and Implant Stability Test Data 

 

This study proposes a machine learning framework for predicting tooth mobility and implant 

stability by integrating anatomical features extracted from periapical radiographs with 

biomechanical measurements (IST values). A total of 407 annotated radiographs were expanded to 

2,038 via geometric augmentation. Structural indices—such as head-to-root area ratios, 

periodontal ligament visibility, and root morphology—were engineered into composite features. A 

stacked ensemble model, incorporating LightGBM, XGBoost, and Random Forest with a Ridge 

Regression meta-learner, was trained on these features. 

The best-performing model achieved an R² of 0.6840, MAE of 4.0132, and MSE of 46.6392, 

demonstrating robust alignment between predicted and actual IST values. SHAP analysis revealed 

that root type and crown-root ratios were the most influential predictors. Although ligament 

annotations were sparse, their inclusion improved model accuracy in well-annotated cases. 

These findings highlight the potential of anatomy-aware, image-based regression models to 

non-invasively assess periodontal support and implant stability. The proposed framework bridges 

radiographic morphology and objective biomechanics, offering a reproducible, data-driven 

approach for clinical decision support in dentistry. 

 

―――――――――――――――――――――――――――――――――――――--―― 

Key words: Tooth mobility, Implant stability, IST value, Periapical radiograph, Machine learning, 

Periodontal assessment
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1. INTRODUCTION 
 

Periodontal disease is a prevalent, chronic inflammatory condition that compromises the 

supporting structures of the teeth, including the periodontal ligament and alveolar bone (Lang & 

Bartold, 2018). Characterized by progressive tissue degradation, the disease leads to increased 

tooth mobility as the periodontal ligament fibers loosen and vertical bone height diminishes 

(Elemek, 2022). Clinically, it manifests through sustained inflammation, connective tissue 

attachment loss, and alveolar bone resorption—pathological processes that collectively increase 

tooth mobility. These changes adversely affect masticatory function, and may result in pain, 

discomfort, and eventual tooth loss, thereby impairing both oral and systemic quality of life. 

Radiographic imaging is essential for the diagnosis and longitudinal assessment of periodontal 

disease (Hoss et al., 2023). Among available modalities, periapical radiography remains a widely 

adopted tool due to its high resolution and ability to visualize fine anatomical details of teeth and 

their surrounding structures. When combined with clinical indicators—such as probing depth and 

tooth mobility—periapical images offer a comprehensive diagnostic framework that enhances the 

accuracy of disease evaluation and informs treatment strategies (Elemek, 2022). 

In this context, tooth mobility serves as a critical parameter in assessing periodontal health 

(Kim et al., 2023), providing valuable insight into disease severity and progression. It also plays a 

central role in diagnostic decisions, treatment planning, and outcome monitoring. Conventionally, 

mobility is evaluated manually through controlled force application, with displacement assessed 

subjectively (Meirelles et al., 2020). The Miller Classification System, one of the most widely 

used frameworks, grades mobility into three categories based on the extent of horizontal and 

vertical movement. However, these methods are inherently subjective and susceptible to inter-

examiner variability, which compromises reproducibility and limits research applicability. 

To address the limitations of subjective mobility grading systems, objective and non-invasive 

diagnostic tools have been developed (Okuhama et al., 2022). Among them, the stability 

measuring instrument (AnyCheck, Neo Biotech, South Korea) has gained clinical acceptance for 

their ability to standardize mobility assessments through vibrational impulse testing. The 

instrument quantifies the biomechanical response of a tooth by delivering controlled vibrational 

impulses (D.-H. Lee et al., 2020). This procedure yields an Implant Stability Test (IST) value that 
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inversely correlates with mobility (J. Lee et al., 2020). Higher IST values indicate greater 

structural stability, while lower values suggest compromised periodontal support. 

Although the IST values obtained from the instrument offer improved reproducibility and 

diagnostic precision, they represent a purely mechanical measurement and do not incorporate 

anatomical variations that may critically influence overall stability. Therefore, IST values alone 

may not capture the full biomechanical context necessary for accurate clinical interpretation. 

Recent advances in digital imaging and artificial intelligence (AI) (Ari et al., 2022) have 

further enhanced the precision and depth of periodontal assessment (Medina-Sotomayor et al., 

2019). They have enabled automated extraction of structural features from dental radiographs, 

supporting enhanced diagnostic workflows (Çelik et al., 2023). However, existing AI applications 

in dentistry have largely focused on classification tasks (Benakatti et al., 2022), such as caries 

detection or bone loss segmentation, rather than the prediction of quantitative biomechanical 

indicators like IST values. Furthermore, few models integrate radiographic anatomy with clinical 

mechanical measurements (Cha et al., 2021) to evaluate tooth mobility or implant stability. This 

gap limits the potential for fully automated, anatomy-aware diagnostic systems.  

To address this, I propose a data-driven machine learning framework that integrates 

radiographic structure and clinical measurement by combining image-derived support-related 

features with IST values obtained from the instrument. By combining objective radiographic and 

clinical measurement, the framework enables more precise, individualized assessment of dental 

support conditions and may facilitate earlier intervention to prevent structural deterioration. 

To approximate clinically relevant indicators of mobility, I extracted image-based structural 

features from periapical radiographs that reflect anatomical support integrity, such as head-to-root 

proportions and ligament visibility, both of which are well-established correlates of biomechanical 

stability in periodontics. 
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2. MATERIALS AND METHODS 

 

2.1 Data Pre-processing 

 

2.1.1 Data Annotation 

 

This study developed a quantitative index system based on anatomical segmentation and 

weighted area ratios to assess the contribution of distinct dental regions to overall tooth mobility. 

This system enables objective measurement and facilitates multivariate statistical analysis of 

biomechanical stability. 

The dataset comprises 407 periapical radiographs, approved by the Institutional Review Board 

of Dental Hospital, Yonsei University, South Korea (IRB No. 2-2025-0018). All images were 

selected to preserve complete tooth morphology, ensuring morphological completeness and 

annotation consistency. Corresponding IST values were acquired during clinical procedures. These 

values served as surrogate indicators of tooth mobility. 

Each radiograph was annotated using the open-source labeling platform Computer Vision 

Annotation Tool (CVAT). The following three anatomical regions were defined: 

Head: The supragingival portion of the tooth above the bone line. 

Root: The subgingival portion of the tooth below the bone line (each tooth could contain one 

or more root labels). 

Ligament: The visible periodontal ligament (PDL) region, annotated selectively based on 

visibility thresholds. 
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2.1.2 Data Augmentation Specifics 

 

To enhance model robustness and mitigate overfitting, a series of geometric data augmentation 

techniques were applied to simulate anatomical variability commonly observed in periapical 

radiographs. The augmentation process included the following transformations: 

Rotation: Random rotation within a range of ±30 degrees 

Scaling: Resizing within a range of 80% to 120% of the original image size 

Shearing: Affine shear transformations along both the horizontal (X-axis) and vertical (Y-axis) 

directions to mimic non-uniform morphological distortions 

Interpolation: Applied to maintain image continuity during spatial transformations 

A total of 1,628 augmented samples were generated through this process, increasing the 

dataset from 407 original instances to approximately 2,038 samples. Among these, 1,160 samples 

belong to the Tooth category and 878 to the Implant category. This expanded dataset contributed 

to reducing model variance and improving generalization performance, especially under conditions 

of limited annotated data. 

 

2.1.3 Data Standardization and Splitting 

 

All input features were standardized using the StandardScaler method from Scikit-learn to 

achieve zero mean and unit variance, ensuring scale uniformity across predictors. The dataset was 

randomly split into training and validation sets in an 80:20 ratio, the random seed was fixed at 42 

to ensure reproducibility.  
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Figure 1. Periapical & Annotation image sample 
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2.2 Computational Methods 

 

2.2.1 Feature Definition and Engineering 

 

The selected structural features were designed to approximate clinically recognized 

determinants of tooth mobility. Specifically, head-to-root ratios have long been associated with 

periodontal support capacity (Tada et al., 2015; Hartmann et al., 2017), while the visibility of the 

periodontal ligament reflects surrounding soft tissue integrity. By quantifying these anatomical 

indicators from radiographs, the model aims to emulate clinical judgment within an interpretable, 

image-based framework, using IST values as an objective surrogate for mobility grading. 

The dataset was composed of two distinct categories: Tooth and Implant. During modeling, 

separate models were trained for each category to account for their specific characteristics.  

Based on the annotated regions, three primary structural metrics were derived to quantify 

region-specific contributions to overall tooth mobility: 

Head_Area_Ratio: The ratio of the crown area to the total object area.  

𝐻𝑒𝑎𝑑_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 =  𝐻𝑒𝑎𝑑_𝐴𝑟𝑒𝑎 / 𝑇𝑜𝑡𝑎𝑙_𝐴𝑟𝑒𝑎 

A higher value suggests a larger exposed crown relative to root support, potentially indicating 

higher mobility.  

Root_Area_Ratio: The ratio of the root area to the total object area.  

𝑅𝑜𝑜𝑡_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 =  𝑅𝑜𝑜𝑡_𝐴𝑟𝑒𝑎 / 𝑇𝑜𝑡𝑎𝑙_𝐴𝑟𝑒𝑎 

Higher values generally reflect greater subgingival anchorage, implying increased stability. 

Ligament_Weight: A categorical variable (ranging from 0 to 3) representing the proportion of 

the visible PDL region. 

For the Implant category, Ligament_Weight is consistently set to 0, while for the Tooth 

category, weights ranging from 1 to 3 are assigned based on the relative area of the visible PDL. 

The Ligament_Weight feature, unique to the Tooth category, was present in only 24.14% of 

annotated samples.  



 

 

7 

 

 

This reflects the hypothesis that a more extensive ligament area, when present, may correlate 

with reduced stability and increased mobility. 

In addition to annotated regions, a binary classification of root morphology—referred to as 

Root_Count—was introduced to further distinguish between tooth types: 

Root_Count: Categorized based on the number of tooth roots. 

Teeth with FDI numbers 1–5 were labeled as single-rooted (Root_Count_Single), while teeth 

numbered 6–7 were labeled as multi-rooted (Root_Count_Multi) (Ziegler et al., 2005). 

To enhance feature expressiveness and capture second-order relationships, I introduced 

composite features that reflect both physiological interactions and statistical dependencies between 

anatomical regions. 

These composite features including Multiplicative and Division Interaction between 

Head_Area_Ratio and Root_Area_Ratio: 

𝐻𝑒𝑎𝑑_𝑚𝑢𝑙_𝑅𝑜𝑜𝑡 =  𝐻𝑒𝑎𝑑_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 ×  𝑅𝑜𝑜𝑡_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 

𝐻𝑒𝑎𝑑_𝑑𝑖𝑣_𝑅𝑜𝑜𝑡 =  𝐻𝑒𝑎𝑑_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 ÷  𝑅𝑜𝑜𝑡_𝐴𝑟𝑒𝑎_𝑅𝑎𝑡𝑖𝑜 

Given that IST values were predominantly concentrated within the range of 40 to 99 and 

exhibited a slight right-skew, using a log transformation can help improve model performance by 

providing a smoother compression and enhancing generalization. This transformation was applied 

to stabilize variance and mitigate the influence of outliers, as formulated below: 

Log Transformation 

𝐼𝑆𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 = 𝑙𝑜𝑔(𝐼𝑆𝑇 + 1) 

For model training, the regression target IST underwent a logarithmic transformation to 

stabilize variance and reduce right-skewness. For final evaluation, predictions were transformed 

back to the original scale to facilitate clinical interpretation. 

These variables collectively form the basis of the proposed index system, incorporating both 

geometric and biological factors into a unified predictive model of tooth mobility. 

For the Implant category, only “Head_Area_Ratio,” “Root_Area_Ratio,” “Multiplicative 

Interaction” and “Division Interaction” were utilized, whereas the Tooth category additionally 

included “Ligament_Weight” and “Root_Count” to better capture category-specific anatomical 

features. 
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Table 1. Independent variables & Dependent variable Sample 

 

Number Head_Area_Ratio Root_Area_Ratio Ligament_Weight Root_Count IST 

234_1_36 0.633610452514933 0.331466425162557 2 Multi 85 

212_3_45 0.621939166530842 0.378060833469159 1 Single 64 

178_1_25 0.793570225976259 0.206429774023741 1 Single 52 

91_2_21 0.662396467998998 0.296749255855085 2 Single 72 

59_2_46 0.585527248193002 0.366902942098214 3 Multi 91 
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Figure 2. Independent variables & Dependent variable image sample 
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2.2.2 Model Architecture and Implementation 

 

All computational procedures were implemented using Python 3.11, supported by PyTorch, 

OpenCV, and Scikit-learn libraries.The overall workflow included preliminary model exploration, 

features preprocessing, stacked ensemble design and hyperparameter optimization. 

Prior to developing the final ensemble model, several baseline regressors were tested to assess 

the predictive potential of the data. Ridge Regression and Lasso were initially employed due to 

their built-in regularization properties, which are particularly effective on small datasets with 

potential multicollinearity. When linear models demonstrated insufficient performance, non-linear 

alternatives such as Random Forest, Support Vector Regression (SVR), and Polynomial 

Regression were explored. 

During this phase, standardization was selectively applied to mitigate distributional disparities 

across features and facilitate fair model comparison. These preliminary experiments served to 

identify effective modeling approaches and guide subsequent ensemble design. 

Based on insights from the exploratory stage, a two-layer stacked regression model was 

constructed to enhance predictive performance. The ensemble consisted of three diverse base 

learners: 

 Random Forest Regressor – Robust to noise with strong interpretability. 

 XGBoost Regressor– High predictive accuracy with effective overfitting control. 

 LightGBM Regressor – Memory-efficient and well-suited for large-scale data. 

These models were selected for their capacity to handle non-linear relationships and feature 

interactions without requiring extensive preprocessing. Their predictions were combined via a 

meta-regressor implemented using LightGBM, forming a standard level-1 stacking architecture, 

which allows the ensemble to leverage the strengths of each base learner—combining the 

robustness and interpretability of Random Forests, the precision and regularization of XGBoost, 

and the scalability of LightGBM. 
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This stacking approach enhances generalization by learning from the unique error patterns of 

each model via a meta-learner, making the ensemble more adaptable to diverse feature types and 

data distributions. 

To ensure that all models operated under comparable conditions, input features were 

standardized using z-score normalization. Categorical variables (e.g., Root_Count from root 

morphology) were one-hot encoded, and derived composite features (e.g., multiplicative and 

divisive interactions) were retained in the final feature matrix. The target variable (IST) was log-

transformed prior to training to reduce skewness and stabilize model learning. 

For the Implant category, features irrelevant to implants—such as Ligament_Weight and 

Root_Count, which pertain exclusively to natural dentition—were excluded to prevent information 

leakage and model bias. By tailoring the feature set in this way, the modeling strategy ensured that 

the learned representations were both physiologically meaningful and statistically robust across 

categories. 

To improve the generalization capacity of the stacking ensemble, the LightGBM model—used 

as both a base learner and the meta-learner—was fine-tuned using Bayesian optimization via 

Optuna. 

The optimization process yielded a set of finely tuned hyperparameters that balanced model 

complexity and regularization. The best configuration identified by Optuna included a learning 

rate of 0.02 and 104 boosting iterations (n_estimators), supporting gradual convergence and 

enhanced stability. Tree structure was controlled through a maximum depth of 6, 139 leaves, and a 

minimum of 47 samples per leaf, which effectively mitigated overfitting risks. In terms of 

sampling strategies, the model employed 62.73% feature subsampling (colsample_bytree) and 

74.14% instance subsampling (subsample), contributing to model robustness and generalization. 

Regularization was applied via L1 (reg_alpha = 0.6562) and L2 (reg_lambda = 0.2589) penalties, 

promoting sparsity and reducing variance. These hyperparameters collectively improved the 

ensemble's ability to generalize across unseen data while maintaining high predictive performance. 

The optimal hyperparameters derived from this process were directly applied to the 

LightGBM components of the final ensemble. Model fitting was conducted on 80% of the data, 

with the remaining 20% reserved for independent performance evaluation. 
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2.3 Model Evaluation 

 

2.3.1 Statistical Analysis of Model Performance 

 

Model performance was quantitatively assessed using three widely recognized regression 

metrics: 

 R² (Coefficient of Determination): Measures the proportion of variance in the dependent 

variable explained by the model. 

 MAE (Mean Absolute Error): Represents the average magnitude of absolute prediction 

errors, providing a direct measure of accuracy. 

 MSE (Mean Squared Error): Penalizes larger errors more heavily, offering sensitivity to 

outliers due to the squaring operation. 

In addition to numerical evaluation, two forms of visual analysis were conducted to further 

inspect model behavior: 

Residual Distribution Plots: Used to assess the spread and symmetry of residuals, supporting 

the detection of bias and heteroskedasticity. 

Scatter Plots of Predicted vs. Actual IST Values: Used to visualize the alignment between 

predicted outcomes and ground truth labels, offering insight into the consistency and precision of 

model predictions. 

 

2.3.2 Evaluation Strategy 

 

To assess the predictive performance of the proposed model, I employed a stratified 80/20 

hold-out validation strategy based on the log-transformed IST values. This approach ensured that 

the held-out test set preserved the overall distribution of the target variable, thereby providing a 

stable and interpretable estimate of model generalization. 
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While cross-validation (e.g., 5-fold) is commonly used in small-sample machine learning 

settings, it was not adopted in this study due to several key limitations observed during preliminary 

evaluation: 

Limited sample size: Although data augmentation increased the total sample count from 407 

to approximately 2,038, the augmented instances were derived from existing images and thus 

lacked independent diversity. As a result, partitioning the dataset into five folds yielded validation 

subsets that were both small in size and compositionally similar, undermining the stability and 

reliability of cross-validation estimates. 

Non-uniform target distribution with outliers: The IST values were concentrated in the 40–99 

range but included a small number of outliers. These outliers disproportionately influenced 

individual folds, resulting in unstable and unrepresentative performance estimates. 

Low variance in target values across folds: A substantial number of samples shared identical 

IST values despite having distinct structural features. This redundancy reduced the model’s 

capacity to generalize within each fold. It often led to negative R² values in cross-validation, which 

did not reflect the model’s true predictive capacity. 

Given these challenges, the stratified hold-out strategy was determined to be a more reliable 

alternative. It allowed for a distributionally representative and independent test set, offering a more 

reliable estimate of the model's real-world predictive utility. 

All feature engineering and model configurations remained consistent across evaluation 

strategies. 

It is important to note that k-fold cross-validation does not inherently cause overfitting. On the 

contrary, it is typically used as a safeguard against overfitting by assessing model performance 

across multiple subsets of the data. However, in this study, the issues related to sample 

redundancy, limited diversity, and outlier sensitivity impaired its effectiveness. Consequently, the 

poor cross-validation results observed were not due to overfitting induced by the method itself, but 

rather due to the unsuitability of cross-validation under the given data constraints. 
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3. RESULTS 

 

3.1 Data Characterization 

 

SHAP (SHapley Additive exPlanations) is a game-theoretic approach to explain the output of 

machine learning models by assigning each feature an importance value for a particular prediction. 

It is based on Shapley values from cooperative game theory, which fairly attribute the contribution 

of each feature by considering all possible feature combinations. SHAP ensures consistency and 

local accuracy, and it provides a unified framework for interpreting model predictions across 

various algorithms (Lundberg & Lee, 2017). 

Based on SHAP global importance analysis, Root_Count_Single emerged as the most 

influential feature in the final stacked model, followed by Head_Area_Ratio. Features such as 

Head_mul_Root, Head_div_Root, and Root_Area_Ratio contributed modestly to the model's 

predictions, suggesting that interactions among anatomical ratios still provide some predictive 

information. Although Ligament_Weight had low global SHAP importance, its inclusion 

improved performance in specific well-annotated cases. Conversely, features like 

Root_Count_Multi showed relatively lower SHAP values, indicating limited global influence on 

prediction outcomes. 
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Table 2. The quantitative feature contributions 

 

Head_Area_Ratio 0.026463092252297 

Root_Area_Ratio 0.00811624670968596 

Ligament_Weight 0.0106117627431046 

Head_div_Root 0.00820128856193532 

Head_mul_Root 0.00907187055508318 

Root_Count_Single 0.0342623996169037 

Root_Count_Multi 0.011981388153502 
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3.2 Model evaluation results 

 

To evaluate the predictive efficacy of the proposed framework, a series of regression models 

were trained and tested on both baseline and augmented datasets. A comprehensive comparison 

across all model configurations is summarized in Table 3 and Figure 3. 

Among the tested configurations, the best-performing model was the Stacked Ensemble 

Regressor with Optuna-Tuned Base Learners, which achieved R² = 0.6840, MAE = 4.0132, and 

MSE = 46.6392. As shown in the scatter plot (Figure 4) reveals a strong linear relationship 

between predicted and actual IST values. The majority of data points distributed closely around 

the identity line (y=x), indicating a high level of consistency and predictive reliability. The scatter 

plot indicates high predictive consistency across the dataset, although slight deviations appear at 

the lower and upper bounds. 

This model exhibited greater deviation from the identity line(Figure 5), particularly at the 

distribution extremes—suggesting lower predictive stability for high and low IST values. The 

residuals are approximately normally distributed, centered near zero, suggesting that the model 

does not exhibit systematic over- or under-prediction. A minor left-skew was observed, 

corresponding to a slight tendency to overestimate IST values in a subset of cases. Most residuals 

fell within the acceptable range of -15 to +15, which aligns well with the target IST range (~40–

99). 

A slightly less performant, but still competitive, configuration was the Stacked Ensemble with 

Next-Best Parameters, which yielded an R² = 0.6712, MAE = 3.9735, and MSE = 48.5285. 

Although this variant used a different parameter set, the ensemble structure still contributed to 

superior performance relative to standalone models. 

In contrast, the single-model LightGBM regressor, trained using the best Optuna-tuned 

parameters, achieved an R² = 0.5443, MAE = 4.9295, and MSE = 52.6795. Another LightGBM 

variant with an alternative tuning set performed R² = 0.5928, though with marginal improvements 

in MSE.  

These findings highlight the superiority of ensemble learning—particularly stacking 

approaches—in modeling the complex relationship between anatomical features and IST values. 
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The added diversity and regularization inherent in the ensemble framework appear to contribute to 

both improved generalization and resilience against overfitting, especially in data-constrained 

settings. 
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Table 3. Performance comparison of regression models on IST prediction 

 

Model name Description R² MAE MSE 

LGBM with best 

Optuna-tuned 

LGBM with Optuna-tuned 

parameters 0.5443 4.9295 52.6795 

LGBM with next best 

parameters 

LGBM with alternative 

tuning 0.5928 4.5154 47.0762 

Stack with next best 

parameters 

Stacking ensemble with 

alternative tuning 0.6712 3.9735 48.5285 

Stack with best Optuna-

tuned 

Stacking ensemble with 

optimal tuning 0.6840 4.0132 46.6392 
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Figure 3. Comparative Performance of Regression Models 

 

(A) The R² scores for each model variant demonstrate the increasing explanatory power from 

single LightGBM models to stacked ensembles. (B) The MAE comparison highlights improved 

prediction accuracy in ensemble models, with reduced average absolute error. (C) MSE values 

further confirm the robustness of the best-performing ensemble, showing minimized squared 

deviations from actual IST values. 
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Figure 4. Scatter plot for the Best stacking ensemble model 

 

Figure 4 illustrates the relationship between the predicted and actual IST values using the best-

performing stacking ensemble model. 

The red dashed line represents the ideal prediction line (i.e., y = x), where predicted values 

perfectly match the actual values. Most points are closely clustered around this line, indicating that 

the model achieves good predictive accuracy across the IST range. Some deviations are observed 

at the lower and higher ends of the spectrum, which may be attributed to either natural data 

variability or feature distribution sparsity in those regions. 

Overall, the alignment between predicted and actual values confirms that the model 

generalizes well and captures the underlying trends in the dataset.  
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Figure 5. Residual error distribution for the Best stacking ensemble model 

 

Figure 5 shows the residual distribution of the model’s predictions, calculated as the 

difference between predicted and actual IST values. 

The distribution is approximately symmetric and centered around zero, suggesting that the 

model does not exhibit significant bias toward under- or over-prediction. The sharp peak near zero 

indicates that a large number of predictions are very close to the true values. While there are a few 

outliers on both sides, their frequency remains relatively low, further supporting the model's 

stability and reliability. 

This residual analysis provides evidence that the stacking ensemble is both accurate and 

consistent in its performance. 
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Table 4. Predict Sample of regression models 

 

NO Ground 

Truth 

IST 

single-model 

LightGBM 

regressor 

Stacked Ensemble 

Regressor 

Best single-model 

LightGBM 

regressor 

Best Stacked 

Ensemble 

Regressor 

1 89 67.0678751640609 71.1676402452464 77.1332373477588 84.3374702690263 

2 85 60.2180043276674 62.586692774391 76.7609012128253 77.5427520945426 

3 82 61.4157276436492 63.5794775412525 70.3452923363921 70.3753408507754 

4 71 66.9118596274807 67.7177509260275 77.9459981014538 72.9760140305359 

5 68 82.2642009499803 76.3036935152867 72.5085160633591 71.3952839030461 

6 65 68.2898967789879 69.0995562634188 65.4657097072644 65.3433472116171 

7 65 68.7817063962947 67.2148531529094 70.2864725056201 67.9001878907733 

8 63 63.3571639179658 66.7881551038627 67.3833460130366 63.1097995392522 

9 56 63.6274764397264 64.0688536739561 61.9850946935996 61.6014424055396 

10 43 76.3857699636348 75.1367352801903 59.0547807673703 58.9560645537547 
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3.3 Hold-Out Validation Result 

 

The final model, previously identified as the stacking ensemble with optimal Optuna tuning, 

was evaluated on the hold-out set to assess generalization performance. The stacking ensemble 

achieved R² = 0.6840, MAE = 4.0132, and MSE = 46.6392. These results, though slightly lower 

than those from the augmented training set, confirm the model's generalizability and practical 

viability in clinical prediction tasks. 
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4. DISCUSSION 

 

 

4.1 Impact of Sample Size and Data Sparsity 

 

The limited sample size (n = 407) constrained model generalization and reduced statistical 

power. To mitigate this, geometric data augmentation was applied to simulate anatomical 

variability, expanding the dataset to 2,038 instances. This enrichment improved model stability—

particularly for implants, where greater heterogeneity exists (Park et al., 2023; Pedram Pakravan et 

al., 2024). 

Sparse annotation of ligament structures posed another challenge. The Ligament_Weight 

feature was present in only 24.14% of annotated cases, yet its inclusion yielded noticeable gains in 

specific scenarios where the periodontal ligament was well-defined. Although SHAP analysis 

indicated low global importance, its localized predictive value underscores the diagnostic potential 

of ligament-related features. 

These findings suggest that improving segmentation accuracy could enhance ligament-aware 

modeling. Future work should incorporate more precise ligament annotations to fully leverage this 

feature's utility. 

 

4.2 Model Performance Metrics and Interpretation 

 

An R² value of 0.6840 indicates that the model explains approximately 68.4% of the variance 

in IST values. While not exceptionally high, this level of performance is acceptable considering 

the limited dataset size and the restricted scope of available features. 

Such values are typical in biomedical regression tasks involving small or noisy data, 

especially in scenarios where ligament-related samples are underrepresented, limiting the model’s 

ability to learn biomechanical associations. 
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However, it also reflects the model’s inability to fully capture latent biomechanical or clinical 

determinants of mobility, underscoring the need for richer and more diverse input data. 

The mean absolute error (MAE) of 4.0132 should be interpreted in the context of a typical IST 

range of 40 to 99. This suggests that the model may be adequate for screening purposes or as an 

adjunct to clinical assessment, though it may not yet meet the precision standards required for 

high-stakes diagnostic decisions. 

The mean squared error (MSE) of 46.6392 further highlights the presence of occasional large 

prediction deviations, indicating the need to control for outliers and reduce predictive variance. 

Future improvements should aim to further enhance R² and minimize large errors by 

incorporating more diverse and semantically rich input features—particularly those capturing 

ligament-specific biomechanical and anatomical characteristics. 

 

4.3 Model Performance and Feature Utility 

 

The stacking ensemble model with Optuna-tuned base learners exhibited the best predictive 

performance across all tested configurations. By integrating LightGBM, XGBoost, and Random 

Forest as base learners—and employing Ridge Regression as the meta-learner—the ensemble 

effectively captured both nonlinear and linear feature interactions. This architecture enhanced 

generalization capacity and mitigated the risk of overfitting. 

Among the input features, Head_Area_Ratio displayed a strong inverse association with IST 

values, aligning with clinical expectations that a higher head-to-root ratio suggests diminished 

periodontal support. 

In contrast, Root_Area_Ratio was positively correlated with IST values, likely indicating the 

stabilizing biomechanical influence of the subgingival root structure. 

To better capture complex anatomical interactions, two nonlinear composite features—

Head_Area_Ratio × Root_Area_Ratio and Head_Area_Ratio ÷ Root_Area_Ratio—were 

introduced to capture potential interactions between anatomical regions: 

Head_Area_Ratio × Root_Area_Ratio (Multiplicative Interaction): Reflects the joint 

contribution of crown and root area, emphasizing configurations where both regions are 
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simultaneously large. This can signal enhanced or reduced biomechanical stability depending on 

structural coupling, and is especially informative for linear models such as the RidgeCV meta-

learner used in the stacking framework. 

Head_Area_Ratio ÷ Root_Area_Ratio (Division Interaction): Captures the relative balance 

between the crown and root, e.g., "large head with small root" or vice versa. This proportion may 

reflect morphological abnormalities or stress concentration zones, providing additional shape-

based cues for IST prediction. 

Table 5 summarizes the contribution of each composite feature within the stacked model. 

These results confirm that both features contribute positively to predictive accuracy, particularly in 

capturing complex biomechanical interactions. 
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Table 5. Each Features Influence in Stack model 

 

Configuration R² MAE MSE 

Best result (All Features) 0.6840 4.0132 46.6392 

Exception Area_Ratio_Head ÷Area_Ratio_Root 0.4978 5.1276 58.0490 

Exception Area_Ratio_Head ×Area_Ratio_Root 0.5237 5.2649 55.0646 
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4.4 Limitations and Future Directions 

 

Achieving an R² of 0.6840, suggesting moderate predictive capacity within the current dataset 

and feature scope, several limitations merit discussion: 

Limited Sample Size: Despite a fivefold increase in dataset size through augmentation, the 

lack of genuinely independent cases limited the effective variability of the training data. In 

particular, multiple samples sharing identical IST values but differing anatomical features may 

have confused the model’s learning process. Expanding the dataset to 3,000–5,000 

radiographically distinct cases would likely enhance generalizability and improve the stability of 

model predictions. 

Feature Redundancy and Low Interaction Diversity: The current features and their 

combinations capture structural ratios but may lack sufficient heterogeneity. Inclusion of global 

metrics such as Area_Ligament / Total, Total Area, or morphological complexity indices could 

enrich the feature space. 

Absence of Clinical Metadata: Potential confounders such as age group (e.g., young vs. 

elderly), periodontal status, or trauma history of periodontal trauma were not included. 

Incorporating such non-image features could enhance model interpretability and clinical relevance 

through stratified modeling. 

 

4.5 Category-Specific Validation 

 

The final model was trained on a combined dataset composed of both tooth-only and implant-

only categories, using a unified modeling framework. Performance across these subsets was: 

Tooth-only Category: R² = 0.5526, MAE = 4.9249, MSE = 51.7141 

Implant-only Category: R² = 0.3957, MAE = 6.2847, MSE = 66.6596 

These results reveal higher predictive accuracy in tooth-only category compared to implant-

only category. The lower performance in the implant category may stem from greater anatomical 
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variability or data imbalance, and highlights an area for future model refinement or stratified 

training. 

 

4.6 Lower Predictive Performance in Implant-only Category 

 

Subgroup analysis revealed that model performance was substantially lower for implant-only 

category, compared to tooth-only category. This discrepancy likely reflects greater anatomical and 

biomechanical heterogeneity in implant-supported structures, which are less biologically 

standardized than natural teeth.  

Future improvements could include: 

Incorporating implant-specific features, such as implant length, material type, crown-abutment 

design, or peri-implant bone density (Pedram Pakravan et al., 2024). 

Including peri-implant morphological characteristics (Jang et al., 2022) (e.g., bone-implant 

contact ratio, surrounding bone remodeling patterns). 

Using separate sub-models or ensemble components tuned specifically for implant cases to 

reduce modeling noise from heterogeneity. 

These implant-specific enhancements may help close the performance gap and ensure more 

balanced predictive capacity across clinical scenarios. 
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5.CONCLUSION 

 

This study demonstrated the feasibility of predicting tooth mobility by integrating 

radiographic anatomical features with objective stability measurements derived from the device. 

By aligning clinical insight with image-based structural analysis, I developed a supervised learning 

framework capable of estimating IST values—serving as a surrogate marker for periodontal 

support—based on periapical radiographs (Özbay et al., 2024). 

The proposed stacking ensemble model, incorporating LightGBM, XGBoost, and Random 

Forest as base learners with a Ridge Regression meta-learner, achieved the highest predictive 

performance across all tested configurations. Feature analysis revealed that head-to-root ratios and 

composite morphological interactions significantly contributed to prediction accuracy (Park et al., 

2023), while even sparsely annotated periodontal ligament features provided meaningful signal 

when appropriately embedded within the ensemble architecture. 

Looking forward, future studies should expand the dataset to improve statistical power, 

incorporate clinical metadata to enhance context sensitivity, and explore multi-modal frameworks 

that integrate imaging, patient history, and biomechanical data (Huang et al., 2022). These 

directions will be essential for refining the predictive capacity of AI-based diagnostic systems and 

bring them closer to real-world clinical integration. 
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ABSTRACT IN KOREAN 

 

치근단 방사선 사진과 임플란트 안정성 테스트 데이터를 이용한 

치아의 동요도 및 임플란트 안정성 예측 연구 

 

본 연구는 치근단 방사선 영상에서 추출한 해부학적 특징과 AnyCheck 장치를 통해 

측정한 초기 안정성 테스트(IST) 값을 통합하여, 치아 동요도와 임플란트 안정성을 

예측하는 머신러닝 프레임워크를 제안한다. 총 407 개의 주석된 방사선 영상은 기하학적 

증강을 통해 2,038 개로 확장되었으며, 치관-치근 면적 비율, 치주 인대 가시성, 치근 

형태와 같은 구조적 지표를 복합 특징으로 재구성하였다. LightGBM, XGBoost, Random 

Forest 기반 학습기와 Ridge Regression 메타 학습기로 구성된 스태킹 앙상블 회귀 

모델을 구축하였다. 

최종 모델은 R² = 0.6840, MAE = 4.0132, MSE = 46.6392 의 성능을 보였으며, 

예측된 IST 값과 실제 측정값 간의 높은 일치도를 나타냈다. SHAP 분석에 따르면, 치근 

유형과 치관-치근 비율이 가장 영향력 있는 예측 변수로 확인되었으며, 드물게 주석된 

인대 정보도 모델 성능 향상에 기여하였다. 

이러한 결과는 해부학적 구조를 고려한 영상 기반 회귀 모델이 치주 지지력 및 

임플란트 안정성을 비침습적으로 평가할 수 있는 가능성을 보여준다. 제안된 

프레임워크는 방사선 형태학과 생역학적 지표를 연결하여, 치의학 임상에서 신뢰할 수 

있는 진단 보조 도구로 활용될 수 있다. 

 

――――――――――――――――――――――――――――――――――――――――――――――――――――――――― 

핵심 되는 말: 치아 이동도, IST 값, 치근단 방사선 사진, 머신러닝, 치주 평가 

 


